11,891 research outputs found

    Half Cycle Pulse Train Induced State Redistribution of Rydberg Atoms

    Get PDF
    Population transfer between low lying Rydberg states independent of the initial state is realized using a train of half-cycle pulses with pulse durations much less than the classical orbit period. We demonstrate experimentally the transfer of population from initial states around n=50 down to n<40 as well as up to the continuum. The measured population transfer matches well to a model of the process for 1D atoms.Comment: V2: discussion extended, version accepted for publication in Physical Review

    RVB gauge theory and the Topological degeneracy in the Honeycomb Kitaev model

    Full text link
    We relate the Z2_2 gauge theory formalism of the Kitaev model to the SU(2) gauge theory of the resonating valence bond (RVB) physics. Further, we reformulate a known Jordan-Wigner transformation of Kitaev model on a torus in a general way that shows that it can be thought of as a Z2_2 gauge fixing procedure. The conserved quantities simplify in terms of the gauge invariant Jordan-Wigner fermions, enabling us to construct exact eigen states and calculate physical quantities. We calculate the fermionic spectrum for flux free sector for different gauge field configurations and show that the ground state is four-fold degenerate on a torus in thermodynamic limit. Further on a torus we construct four mutually anti-commuting operators which enable us to prove that all eigenstates of this model are four fold degenerate in thermodynamic limit.Comment: 12 pages, 3 figures. Added affiliation and a new section, 'Acknowledgements'.Typos correcte

    Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Full text link
    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angular variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Land\'{e} gg-factor, PMA constant, and effective magnetization are found to be 2.1, 2×105\times10^{5} erg/cm3^{3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α\alpha) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α\alpha is found to be 0.006 at 10 GHz and it increases with decreasing precessional frequency.Comment: 5 Pages, 6 Figures, Regular Submissio

    Rolling tachyon solution of two-dimensional string theory

    Full text link
    We consider a classical (string) field theory of c=1c=1 matrix model which was developed earlier in hep-th/9207011 and subsequent papers. This is a noncommutative field theory where the noncommutativity parameter is the string coupling gsg_s. We construct a classical solution of this field theory and show that it describes the complete time history of the recently found rolling tachyon on an unstable D0 brane.Comment: 19 pages, 2 figures, minor changes in text and additional references, correction of decay time (version to appear in JHEP.

    A personalised medicine approach for ponatinib-resistant chronic myeloid leukaemia.

    Get PDF
    BACKGROUND: Chronic myeloid leukaemia (CML) is characterised by the presence of a fusion driver oncogene, BCR-ABL1, which is a constitutive tyrosine kinase. Tyrosine kinase inhibitors (TKIs) are the central treatment strategy for CML patients and have significantly improved survival rates, but the T315I mutation in the kinase domain of BCR-ABL1 confers resistance to all clinically approved TKIs, except ponatinib. However, compound mutations can mediate resistance even to ponatinib and remain a clinical challenge in CML therapy. Here, we investigated a ponatinib-resistant CML patient through whole-genome sequencing (WGS) to identify the cause of resistance and to find alternative therapeutic targets. PATIENTS AND METHODS: We carried out WGS on a ponatinib-resistant CML patient and demonstrated an effective combination therapy against the primary CML cells derived from this patient in vitro. RESULTS: Our findings demonstrate the emergence of compound mutations in the BCR-ABL1 kinase domain following ponatinib treatment, and chromosomal structural variation data predicted amplification of BCL2. The primary CD34(+) CML cells from this patient showed increased sensitivity to the combination of ponatinib and ABT-263, a BCL2 inhibitor with a negligible effect against the normal CD34(+) cells. CONCLUSION: Our results show the potential of personalised medicine approaches in TKI-resistant CML patients and provide a strategy that could improve clinical outcomes for these patients

    Observation of a superconducting glass state in granular superconducting diamond

    Get PDF
    The magnetic field dependence of the superconductivity in nanocrystalline boron doped diamond thin films is reported. Evidence of a glass state in the phase diagram is presented, as demonstrated by electrical resistance and magnetic relaxation measurements. The position of the phase boundary in the H-T plane is determined from resistance data by detailed fitting to zero-dimensional fluctuation conductivity theory. This allows determination of the boundary between resistive and non-resistive behavior to be made with greater precision than the standard ad hoc onset/midpoint/offset criterion

    Fluctuation spectroscopy as a probe of granular superconducting diamond films

    Get PDF
    We present resistance versus temperature data for a series of boron-doped nanocrystalline diamond films whose grain size is varied by changing the film thickness. Upon extracting the fluctuation conductivity near to the critical temperature we observe three distinct scaling regions -- 3D intragrain, quasi-0D, and 3D intergrain -- in confirmation of the prediction of Lerner, Varlamov and Vinokur. The location of the dimensional crossovers between these scaling regions allows us to determine the tunnelling energy and the Thouless energy for each film. This is a demonstration of the use of \emph{fluctuation spectroscopy} to determine the properties of a superconducting granular system

    Exact results for spin dynamics and fractionization in the Kitaev Model

    Get PDF
    We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model. It is the first result of its kind in non-trivial quantum spin models. The result is also novel: in spite of presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions are identically zero beyond nearest neighbor separation, showing existence of a gapless but short range spin liquid. An unusual, \emph{all energy scale fractionization}of a spin -flip quanta, into two infinitely massive π\pi-fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies topological quantum computation, our result presents new insights into qubit dynamics and generation of topological excitations.Comment: 4 pages, 2 figures. Typose corrected, figure made better, clarifying statements and references adde
    • …
    corecore