961 research outputs found

    Mechanisms producing fissionlike binary fragments in heavy collisions

    Full text link
    The mixing of the quasifission component to the fissionlike cross section causes ambiguity in the quantitative estimation of the complete fusion cross section from the observed angular and mass distributions of the binary products. We show that the partial cross section of quasifission component of binary fragments covers the whole range of the angular momentum values leading to capture. The calculated angular momentum distributions for the compound nucleus and dinuclear system going to quasifission may overlap: competition between complete fusion and quasifission takes place at all values of initial orbital angular momentum. Quasifission components formed at large angular momentum of the dinuclear system can show isotropic angular distribution and their mass distribution can be in mass symmetric region similar to the characteristics of fusion-fission components. As result the unintentional inclusion of the quasifission contribution into the fusion-fission fragment yields can lead to overestimation of the probability of the compound nucleus formation.Comment: 15 pages, 6 figures, International Conference on Nuclear Reactions on Nucleons and Nuclei, Messina, Italy, October 5-9, 200

    APEX: A Prime EXperiment at Jefferson Lab

    Full text link
    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (AA^\prime) with sub-GeV mass and coupling to ordinary matter of g(106102)eg^\prime \sim (10^{-6} - 10^{-2}) e. Electrons impinge upon a fixed target of high-Z material. An AA^\prime is produced via a process analogous to photon bremsstrahlung, decaying to an e+ee^+ e^- pair. A test run was held in July of 2010, covering mAm_{A^\prime} = 175 to 250 MeV and couplings g^\prime/e \; \textgreater \; 10^{-3}. A full run is approved and will cover mAm_{A^\prime} \sim 65 to 525 MeV and g^\prime/e \; \textgreater \; 2.3 \times10^{-4}.Comment: Contributed to the 8th Patras Workshop on Axions, WIMPs and WISPs, Chicago, July 18-22, 2012. 4 pages, 4 figure

    Evidence for narrow resonant structures at W1.68W \approx 1.68 and W1.72W \approx 1.72 GeV in real Compton scattering off the proton

    Get PDF
    First measurement of the beam asymmetry Σ\Sigma for Compton scattering off the proton in the energy range Eγ=0.851.25E_{\gamma}=0.85 - 1.25 GeV is presented. The data reveals two narrow structures at Eγ=1.036E_{\gamma}= 1.036 and Eγ=1.119E_{\gamma}=1.119 GeV. They may signal narrow resonances with masses near 1.681.68 and 1.721.72 GeV, or they may be generated by the sub-threshold KΛK\Lambda and ωp\omega p production. Their decisive identification requires additional theoretical and experimental efforts.Comment: Published versio

    Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

    Full text link
    The yields of evaporation residues, fusion-fission and quasifission fragments in the 48^{48}Ca+144,154^{144,154}Sm and 16^{16}O+186^{186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the 48^{48}Ca+154^{154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in 48^{48}Ca+154^{154}Sm at the large collision energies and the lack of quasifission fragments in the 48^{48}Ca+144^{144}Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element ZZ=120 (AA=302) show that the 54^{54}Cr+248^{248}Cm reaction is preferable in comparison with the 58^{58}Fe+244^{244}Pu and 64^{64}Ni+238^{238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.

    Quasifission and difference in formation of evaporation residues in the 16^{16}O+184^{184}W and 19^{19}F+181^{181}Ta reactions

    Get PDF
    The excitation functions of capture, complete fusion, and evaporation residue formation in the 16^{16}O+184^{184}W and 19^{19}F+181^{181}Ta reactions leading to the same 200^{200}Pb compound nucleus has been studied theoretically to explain the experimental data showing more intense yield of evaporation residue in the former reaction in comparison with that in the latter reaction. The observed difference is explained by large capture cross section in the former and by increase of the quasifission contribution to the yield of fission-like fragments in the 19^{19}F+181^{181}Ta reaction at large excitation energies. The probability of compound nucleus formation in the 16^{16}O+184^{184}W reaction is larger but compound nuclei formed in both reactions have similar angular momentum ranges at the same excitation energy. The observed decrease of evaporation residue cross section normalized to the fusion cross section in the 19^{19}F+181^{181}Ta reaction in comparison with the one in the 16^{16}O+184^{184}W reaction at high excitation energies is explained by the increase of hindrance in the formation of compound nucleus connected with more quick increase of the quasifission contribution in the 19^{19}F induced reaction. The spin distributions of the evaporation residue cross sections for the two reactions are also presented.Comment: 11 pages, 5 figure
    corecore