36 research outputs found

    Trapalyzer: a computer program for quantitative analyses in fluorescent live-imaging studies of neutrophil extracellular trap formation

    Get PDF
    Neutrophil extracellular traps (NETs), pathogen-ensnaring structures formed by neutrophils by expelling their DNA into the environment, are believed to play an important role in immunity and autoimmune diseases. In recent years, a growing attention has been put into developing software tools to quantify NETs in fluorescent microscopy images. However, current solutions require large, manually-prepared training data sets, are difficult to use for users without background in computer science, or have limited capabilities. To overcome these problems, we developed Trapalyzer, a computer program for automatic quantification of NETs. Trapalyzer analyzes fluorescent microscopy images of samples double-stained with a cell-permeable and a cell-impermeable dye, such as the popular combination of Hoechst 33342 and SYTOX™ Green. The program is designed with emphasis on software ergonomy and accompanied with step-by-step tutorials to make its use easy and intuitive. The installation and configuration of the software takes less than half an hour for an untrained user. In addition to NETs, Trapalyzer detects, classifies and counts neutrophils at different stages of NET formation, allowing for gaining a greater insight into this process. It is the first tool that makes this possible without large training data sets. At the same time, it attains a precision of classification on par with state-of-the-art machine learning algorithms. As an example application, we show how to use Trapalyzer to study NET release in a neutrophil-bacteria co-culture. Here, after configuration, Trapalyzer processed 121 images and detected and classified 16 000 ROIs in approximately three minutes on a personal computer. The software and usage tutorials are available at https://github.com/Czaki/Trapalyzer

    Azithromycin and Chloramphenicol Diminish Neutrophil Extracellular Traps (NETs) Release

    No full text
    Neutrophils are one of the first cells to arrive at the site of infection, where they apply several strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil extracellular traps (NETs). Antibiotics have an immunomodulating effect, and they can influence the properties of numerous immune cells, including neutrophils. The aim of this study was to investigate the effects of azithromycin and chloramphenicol on degranulation, apoptosis, respiratory burst, and the release of NETs by neutrophils. Neutrophils were isolated from healthy donors by density-gradient centrifugation method and incubated for 1 h with the studied antibiotics at different concentrations (0.5, 10 and 50 μg/mL—azithromycin and 10 and 50 μg/mL—chloramphenicol). Next, NET release was induced by a 3 h incubation with 100 nM phorbol 12-myristate 13-acetate (PMA). Amount of extracellular DNA was quantified by fluorometry, and NETs were visualized by immunofluorescent microscopy. Degranulation, apoptosis and respiratory burst were assessed by flow cytometry. We found that pretreatment of neutrophils with azithromycin and chloramphenicol decreases the release of NETs. Moreover, azithromycin showed a concentration-dependent effect on respiratory burst in neutrophils. Chloramphenicol did not affect degranulation, apoptosis nor respiratory burst. It can be concluded that antibiotics modulate the ability of neutrophils to release NETs influencing human innate immunity

    Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps

    No full text
    Abstract The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation
    corecore