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Trapalyzer: a computer program
for quantitative analyses in
fluorescent live-imaging studies
of neutrophil extracellular
trap formation

Michał Aleksander Ciach1*†, Grzegorz Bokota1,2†,
Aneta Manda-Handzlik3†, Weronika Kuźmicka3,
Urszula Demkow3 and Anna Gambin1*

1Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland, 2Centre
of New Technologies, University of Warsaw, Warsaw, Poland, 3Department of Laboratory Diagnostics
and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
Neutrophil extracellular traps (NETs), pathogen-ensnaring structures formed by

neutrophils by expelling their DNA into the environment, are believed to play an

important role in immunity and autoimmune diseases. In recent years, a growing

attention has been put into developing software tools to quantify NETs in

fluorescent microscopy images. However, current solutions require large,

manually-prepared training data sets, are difficult to use for users without

background in computer science, or have limited capabilities. To overcome

these problems, we developed Trapalyzer, a computer program for automatic

quantification of NETs. Trapalyzer analyzes fluorescent microscopy images of

samples double-stained with a cell-permeable and a cell-impermeable dye, such

as the popular combination of Hoechst 33342 and SYTOX™Green. The program is

designed with emphasis on software ergonomy and accompanied with step-by-

step tutorials to make its use easy and intuitive. The installation and configuration

of the software takes less than half an hour for an untrained user. In addition to

NETs, Trapalyzer detects, classifies and counts neutrophils at different stages of

NET formation, allowing for gaining a greater insight into this process. It is the first

tool that makes this possible without large training data sets. At the same time, it

attains a precision of classification on par with state-of-the-art machine learning

algorithms. As an example application, we show how to use Trapalyzer to study

NET release in a neutrophil-bacteria co-culture. Here, after configuration,

Trapalyzer processed 121 images and detected and classified 16 000 ROIs in

approximately three minutes on a personal computer. The software and usage

tutorials are available at https://github.com/Czaki/Trapalyzer.
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1 Introduction

Neutrophils are the most abundant group of white blood cells in

humans. They are often described as the organism’s “frontline

soldiers”, responsible for fighting pathogens during the initial

stages of infection (1, 2). One of their fighting strategies is the

formation of Neutrophil Extracellular Traps (NETs), web-like

structures formed from the cells’ DNA, which ensnare and

putatively kill microbes (3, 4). NETs help to fight infections, but

may also harm the host by damaging surrounding tissues and

promoting inflammation (5). Research shows that excessive or

insufficient formation of NETs plays a role in a number of

diseases, including periodontitis, thrombosis, and arthritis (6, 7).

A better understanding of the dynamics of NET formation may lead

to improved diagnostics and treatment of those diseases. This

requires both qualitative studies of the biology of this process as

well as quantitative studies of its rates in different conditions.
1.1 The biology of NET formation

NET formation induced by either ionomycin or the presence of

Candida albicans has recently been studied on a cellular level by the

means of high-resolution time-lapse microscopy (8). The authors have

observed that this process progresses through a sequence of stages,

shown schematically in Figure 1. The onset of NET formation is

marked by the disassembly of the actin cytoskeleton and the formation

of plasma membrane microvesicles containing cytosolic components.

Next, the neutrophils’ chromatin gradually decondenses, with its

fluorescent staining becoming spatially homogeneous. During and

after chromatin decondensation, the nucleus loses its characteristic

lobulation and becomes partially or fully rounded. After some time, a

rapid disruption of the nuclear envelope causes a release of the DNA

into the cytoplasm. Simultaneously, the plasma membrane gradually

increases its permeability, causing membrane-impermeable markers to

enter the cell. Finally, the plasma membrane ruptures, releasing the

genetic material to the environment.
1.2 Methods and technical challenges of
computer-assisted NET quantification

In recent years, there has been a growing interest in developing

computational methods of NET quantification to make it more
Frontiers in Immunology 02
replicable and objective, while at the same time less laborsome and

time-consuming (9). A number of computer programs for NET

quantification has been released, either based on machine learning

algorithms, including convolutional neural networks and support

vector machines (10–12), or digital image processing techniques,

including image thresholding and classification of regions of

interest (ROIs) based on features such as area or circularity (13–

15). Modern machine learning-based methods are capable of

quantifying not only NETs, but also cells at certain stages of NET

formation, giving a greater insight into the dynamics of this

process (12).

However, the complex nature of NET formation poses a

substantial difficulty in developing software tools to analyze it.

Furthermore, there are numerous experimental methods of NET

quantification (7, 16, 17), and each experimental method not only

requires a different computational approach, but also determines

which stages of NET formation can be quantified. For example,

microvesicle shedding is visible using high-resolution differential

interference contrast microscopy, but not in fluorescent

microscopic images of stained DNA. It is a challenging task to

pinpoint distinct cell morphologies that can be rigorously

quantified, provide their mathematical characterization, and use it

to develop an algorithm for an automatic image annotation.

As a consequence, the currently available software solutions

have a number of drawbacks which limit their usability. Computer

programs based on machine learning require laborious manual

preparations of large training data sets and are often difficult to

use for users without a computer science background. Some of

those programs annotate ROIs only using bounding boxes instead

of a pixel-wise detection. This allows for a simple counting of

NETs and cells, but not for more detailed analyses of their shapes

and areas. On the other hand, the currently available tools based

on digital image processing, which are free from many of those

limitations, quantify NETs, but not the numbers of neutrophils at

different stages of NET formation. One of the reasons for this

situation is that they are arguably more difficult to develop. While

machine learning algorithms, given a manually annotated data set,

are able to figure out the crucial steps of image annotation by

themselves, tools based on digital image processing techniques

need an explicit, human-designed algorithm for this task.

Developing such an algorithm requires an in-depth expert

knowledge of the analyzed process and dedicated studies on

how to mathematically describe and distinguish different

cell morphologies.
FIGURE 1

A schematic representation of the selected stages of Neutrophil Extracellular Trap (NET) formation, based on (8).
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1.3 Trapalyzer: a new computer program
to analyze the dynamics and rates of
NET formation

In this work, we present Trapalyzer (Figure 2), a computer

program for the analysis and annotation of fluorescent microscopy

images of neutrophils and NETs double-stained with a cell-permeable

and a cell-impermeable fluorescent DNA dye, such as a combination of

Hoechst 33342 and SYTOX™ Green. Our software extends the

capabilities of the currently available tools by quantifying more stages

of NET formation without the need for large training data sets. This has

been made possible by extensive studies of fluorescent microscopy

images by an interdisciplinary team composed of clinical scientists,

statisticians, and computer scientists, which have resulted in a small set

of ROI features that characterize the stages, and a scoring system that

uses those features to classify cells. To make NET quantification more

reliable and robust, the program also detects artifacts in the green

channel which can be caused e.g. by background signal or

autofluorescence (18). Trapalyzer is freely available as a plug-in for

the PartSeg software (19). It can be easily combined with other

PartSeg’s features, such as image pre-processing and feature

extraction, which further increase the software’s usability.
1.4 High-throughput computational
analysis of thousands of cells with a user-
friendly software

Trapalyzer offers two modes of analysis: an interactive session

and a batch processing mode. The interactive session allows the user
Frontiers in Immunology 03
to set the program’s parameters and visualize the annotation, while

the batch processing mode can be used to process multiple images

in a single run and save the results in a convenient Excel

spreadsheet. The user can specify the information to be

computed, both image-wise (such as the number of neutrophils at

a given stage of NET formation, the percent of image area covered

by NETs, or the quality of annotation) and ROI-wise (such as the

area of each ROI, its bounding box, or assigned class). Since

Trapalyzer detects ROIs on a pixel-wise basis instead of simple

bounding boxes only, it can also calculate multiple different features

describing their morphologies.

Trapalyzer is designed with an emphasis on software ergonomy

and ease of use. The plug-in requires no installation other than

downloading and placing in the PartSeg’s directory and is

accompanied with easy to follow tutorials available on the project’s

website. The tutorials guide the users through a step-by-step procedure

to tune the program’s parameters and configure its output. This allows

the users to easily learn how to use the software and apply it to their

own experiments even if they have no background in computer science,

giving Trapalyzer the potential to be routinely used in laboratories

researching diverse aspects of NET formation.
1.5 Quantitative analyses of NET formation
in different experimental conditions

We validate our approach on a publicly available benchmark

data set of neutrophils stimulated with peroxynitrite published in

(12) and show that it attains a similar performance to convolutional
FIGURE 2

A screen shot of Trapalyzer running in an interactive session of PartSeg. The left window shows a fluorescence microscopy image taken as a part of

our neutrophil killing assay with a double staining with SYTOX™ Green and Hoechst 33342 DNA dyes. The right window shows the image annotated
by Trapalyzer.
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neural networks using just a fraction of the training data set. We

then show how Trapalyzer can be applied to an experiment on the

dynamics of neutrophil-E. coli bacteria interactions, where we study

the cells’ progression through the stages of NET formation. The

results of this experiment agree with observations made for

individual cells by other authors (8).
2 Methods

To establish the quantifiable classes of ROIs for NET formation

studies, we have performed a neutrophil killing assay of Escherichia

coli bacteria. To verify our conclusions and to assess the

performance of our approach we have downloaded a benchmark

set of images in which neutrophils were incubated without bacteria

and NET formation was induced by various chemical stimuli.
2.1 Reagents

Roswell Park Memorial Institute (RPMI) 1640 medium,

HEPES, SYTOX™ Green, and Hoechst 33342 were purchased

from Thermo Fisher Scientific (Waltham, USA). LB broth was

purchased from Sigma Aldrich (St Louis, MO, USA).
2.2 Preparation of blood neutrophils

Neutrophils were obtained from peripheral blood of one healthy

blood donor. Blood sample was purchased at Local Blood Donation

Centre and according to local regulations, the blood donor enabled

blood donation center to sell their blood samples for scientific

purposes and the consent of bioethical committee was not required.

Blood was collected into a citrate tube and processed within 2 hours

from collection. Neutrophils were isolated using density gradient

centrifugation followed by polyvinyl alcohol sedimentation, exactly

as described in (20). Isolated neutrophils were suspended in RPMI

1640 medium with 10 mM HEPES (RH).
2.3 Preparation of bacteria

Escherichia coli (American Type Culture Collection(ATCC)

25922 strain) were grown overnight in LB broth with shaking. In

the morning, an aliquot of bacterial culture was taken, diluted 100 x

in a fresh LB medium and grown for subsequent 2-3 hours.

Subsequently, bacterial cultures were washed and resuspended in

RH medium.
2.4 Co-culture of neutrophils with bacteria

Neutrophils were seeded into the wells of 48-well plates at the

density of 2×104 cells/well and allowed to settle for 30 minutes at

37°C, 5% CO2. Subsequently, E. coli was added into the appropriate

wells at the multiplicity of infection of 4 or 1 (E.coli: neutrophil).
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Neutrophils incubated without bacteria were used as a control

group. A technical duplicate for each condition was prepared. For

each intended timepoint (t=0, 60, 90, 120, 180 minutes), a separate

48 well plate was prepared. The plates were centrifuged for 5

minutes at 250 g to allow the contact of bacteria with neutrophils.

The plates were incubated at 37°C, 5% CO2 for a specified time and

then the samples were stained with SYTOX™ Green (100 nM) and

Hoechst 33342 (1.25 μM for 10 minutes. Four images of each well

were taken with Leica DMi8 fluorescent microscope equipped with

a 10× magnification objective (Leica, Wetzlar, Germany). Overall,

120 images have been obtained.
2.5 Benchmark data set

A benchmark data set of images of neutrophils and NETs

stained with SYTOX™ Green and Hoechst 33342, published in

(12), was downloaded from https://github.com/krzysztoffiok/CNN-

based-image-analysis-for-detection-and-quantification-of-

neutrophil-extracellular-traps on May 19, 2019. For evaluation of

Trapalyzer’s accuracy, we have selected the validation set in file

large_validation_set.zip, subdirectory xml_pascal_voc_format/

images/oryg. The validation set consists of 57 images. Manual

annotations of the images were accessed in subdirectory

xml_pascal_voc_format/annotations/oryg. Annotations in xml

files were handled using the lxml library of the Python 3

programming language. For tuning of Trapalyzer’s parameters,

additional 10 images were selected from the fi le orig

inal_uncompressed_images_with_pascalvoc_annotations.zip,

rescaled to match the dimentions of the validation set images and

converted to the TIFF format using the convert program from the

ImageMagick suite.
3 Results

3.1 Quantifiable stages of NET formation

In order to pinpoint the stages of NET formation that are

suitable for quantification using an automated algorithm, we first

analyzed manually a set microscopic images of a neutrophil-E. coli

co-culture.

3.1.1 Stages of NET formation identified
with high-resolution time-lapse microscopy
can be observed in low-resolution
fluorescent microscopy

Most of the cells in the images taken at t=0 min exhibited a

typical appearance of unstimulated, polymorphonuclear

neutrophils, without detectable signal in the extracellular channel

(Figure 3A). In images taken between t=60 and t=120 min, we have

observed cells which were visibly brighter and highly circular

(Figure 3B). This morphology most likely corresponded to cells

with a rounded nucleus. Individual cells exhibited this morphology

in t=0 min as well. We have also observed ROIs with larger areas,

lower brightness, and cloud-like appearance, with no signal in the
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extracellular channel (Figure 3C). We assume that this morphology

corresponded to cells with a ruptured nuclear envelope. We did not

observe such cells in t=0 min. In images taken after t=60 min, and

mostly in the later stages of the experiment, we have observed cells

with cloudy appearance and detectable signal in the extracellular

channel (Figure 3D). This morphology corresponded to cells with a

permeabilized plasma membrane. The intensity of signal in the

extracellular channel varied highly for those cells, indicating a

gradual permeabilization, in agreement with (8). Throughout the

experiment, we have also observed ROIs with significantly larger

areas than individual cells, with intense signal in the extracellular

channel and detectable signal in the total DNA channel (Figure 3E).

This morphology corresponded to NETs.

3.1.2 Not all stages of NET formation are suitable
for an automatic quantification

Unstimulated neutrophils, cells with rounded nuclei, cells with

ruptured nuclear envelopes and cells with permeabilized plasma

membranes have distinct morphologies in fluorescent microscopy

images, making them suitable for automatic detection by a software

tool. On the other hand, neutrophils inbetween those stages, in

particular neutrophils undergoing chromatin decondensation and

nuclear rounding, are more difficult to classify. The stage of

chromatin decondensation (between the onset of NET formation

and nuclear rounding) does not seem to have a clear delineation
Frontiers in Immunology 05
from its surrounding stages with simple qualitative features. As

such, this stage does not seem to be a good candidate for a separate

class in an automatic classification scheme, at least in fluorescent

microscopy images of double-stained DNA. Accordingly, we have

decided against distinguishing cells with decondensed chromatin as

a separate class of objects. As a consequence, such ROIs were

automatically classified as either unstimulated cells or cells with

rounded nuclei, depending on the advancement of the NET

formation process.

3.1.3 Clumps of bacteria are an important class of
ROIs in neutrophil killing assays

Starting from t=120 min, we observed clumps of bacteria, both

in the total DNA channel and in the visible light (Figure 4). In

fluorescent light, they appeared as highly amorphous, low-

brightness objects without well-defined edges. With the

exponential growth of bacteria, those clumps become prevalent in

t = 180 min, motivating the decision to include them as yet another

class of ROIs.

3.1.4 Handling artifacts in the extracellular
channel can further improve the precision of NET
area quantification

At the boundaries of NETs, where the chromatin density is low,

the fluorescent signal tends to be low as well, making the
B C D EA

FIGURE 3

Neutrophils at different stages of NET formation visible in fluorescent microscopy with SYTOX™ Green/Hoechst 33342 double staining. The source
images were taken as a part of the neutrophil E coli co-culture study. (A) Polymorphonuclear (unstimulated) neutrophils; (B) Neutrophils with
rounded nucleus; (C) Neutrophils with ruptured nuclear envelope; (D) Neutrophils with permeabilized plasma membrane; (E) An example of a
neutrophil extracellular trap. Scale bar = 10µm, microscope magnification 100x.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1021638
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ciach et al. 10.3389/fimmu.2023.1021638
classification difficult even for human experts (10). Although

the low-intensity regions of NETs can be highlighted by

increasing the brightness and contrast of the image in the pre-

processing stage, the brightness of some regions of NETs can be

roughly similar to the background level. On the other hand, the

background brightness level itself can be slightly uneven due to e.g.

varying plastic density, plastic autofluorescence, or proximity to the

edge of the well. As a consequence, increasing the image brightness

can result in the appearance of artifacts that can be mistaken for

NETs by automatic classifiers (Figure 5). When we increased the

brightness to capture all the detectable NET regions, we have

observed such artifacts in approximately 15% of our images.

Therefore, if NETs are to be labeled precisely and reliably in a

pixel-wise manner, a NET quantification algorithm should be able

to detect and signal potential artifacts in the extracellular channel.

On the other hand, if the precise determination of NET boundaries

is not needed, the image brightness can simply be adjusted so that

artifacts do not jeopardize the analysis. In this case, detection of

artifacts may be unnecessary and, accordingly, Trapalyzer allows

the user to disable this feature.

Additionally, we have observed individual artifacts in the green

channel (with no detectble signal in the Hoechst 33342 channel)

with the size of one to a few neutrophil cells. These artifacts may

have been caused by out-of-focus cells with permeabilized plasma
Frontiers in Immunology 06
membrane or a slight contamination with pollen grains. However,

since such objects jointly constituted less than 0.1% of ROIs in all

images, they did not pose a risk of biasing the results of automatic

classification and could be safely ignored.
3.2 ROI features at different stages

Based on the results presented in (8) and our analysis of

fluorescent microscopy images, we consider seven classes of ROIs:

unstimulated neutrophils; cells with decondensed chromatin and

rounded nuclei; cells with ruptured nuclear envelopes; cells with

permeabilized plasma membranes; neutrophil extracellular traps;

clumps of bacteria; and artifacts in the extracellular channel. After

fixing the set of ROIs that could potentially be quantified in

fluorescent microscopy images of double-stained DNA, we looked

for a minimal set of features that could be used to distinguish them.

3.2.1 Stages of NET formation have characteristic
values of three ROI features

Polymorphonuclear neutrophils could be distinguished from

other classes by a relatively small size and average brightness on the

total DNA channel and the lack of signal inthe extracellular DNA

channel. Neutrophils with rounded nuclei could be distinguished
FIGURE 5

Detecting artifacts in the extracellular channel can improve the accuracy of the determination of the boundaries of NETs. (A) An example of a NET
with low-brightness regions caused by low chromatin density. Using only the high-brightness regions would underestimate the area occupied by
the NET. (B) Enhancing the image contrast highlights the NET boundaries, but also reveals a slightly uneven background brightness. Without a
proper implementation in the classification algorithm, background regions with a higher brightness can be a source of errors. The image was taken
as a part of the neutrophil-E. coli co-culture study at t=180 min with multiplicity of infection equal 1.
FIGURE 4

A typical appearance of a clumps of bacterial cells (arrows) in the visible and the fluorescent light compared to the appearance of neutrophil cells at
different stages of NET formation. The contrast of the fluorescent images has been enhanced to better visualize the bacteria. The image was taken
as a part of the neutrophil-E. coli co-culture study at t=90 min with multiplicity of infection equal 4. Scale bar = 50 µm, magnification 100x.
Combined channels: Hoechst 33342 in blue, SYTOXTM Green in green as in Figure 3.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1021638
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ciach et al. 10.3389/fimmu.2023.1021638
from other ROIs by particularly high values of average brightness in

the total DNA channel. Neutrophils with ruptured nuclear

envelopes typically had larger areas than both previous classes. In

some cases, they had similar areas to neutrophils with rounded

nuclei, but could be distinguished from this class by lower average

brightness. Neutrophils with permeabilized plasma membrane

covered the same range of areas and brightness in the total DNA

channel as the three previous classes. However, they could be easily

distinguished from other cells as the only ones with detectable

signal in the extracellular DNA channel.

3.2.2 Standard deviation of extracellular signal
separates artifacts in the extracellular channel
from NETs

Large areas and intense signal in the extracellular DNA channel

distinguished NETs from cells, but not from artifacts in the

extracellular channel caused e.g. by uneven background

brightness. However, due to differences in chromatin density, the

brightness of NETs was spatially non-homogeneous, while for the

artifacts it was mostly uniform, especially after applying a median

filter. This was effectively captured by setting a threshold for the

standard deviation of brightness of NETs in the extracellular DNA

channel. Notably, with this approach, any ROI that does not

conform to the characterization of a NET is classified as an

artifact, regardless of its physical origin.

We did not observe an increase in classification accuracy when

we additionally included an upper threshold for ROI circularity of

NETs, as proposed by other authors (14). On the contrary, NETs

can be highly circular in shape (Figure 3), especially when formed in

the absence of bacteria (12).

3.2.3 Laplacian of Gaussian values characterize
clumps of bacteria

The most defining feature of bacterial clumps was the low,

highly non-homogeneous signal in the total DNA channel.

However, the standard deviation of brightness failed to

distinguish them from other classes of ROIs. Another

characteristic feature was the lack of well-defined borders, which

was effectively captured by small values of the average Laplacian of

Gaussian (LoG) of the total DNA channel.

Five features distinguish eight classes of ROIs. The progression

of NET formation, the observed morphologies of different stages in

fluorescent microscopy images, and the mathematical features that

characterize them motivate the classification of ROIs into the

following classes:
Fron
• PMN neutrophils, polymorphonuclear, unstimulated

neutrophils, with a moderate cell size and brightness, and

a lack of signal on the extracellular DNA channel;

• RND neutrophils, cells with decondensed chromatin and

rounded nucleus, with higher brightness than PMN

neutrophils;

• RUP neutrophils, neutrophils with ruptured nuclear

envelope, with larger cell sizes than RND neutrophils and

possibly lower brightness than PMN neutrophils;
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• PER neutrophils, neutrophils with a permeabilized plasma

membrane, with detectable signal on the extracellular DNA

channel;

• NETs, Neutrophil Extracellular Traps, with an intense

signal on the extracellular DNA channel, low to no signal

on the total DNA channel, and noticeable standard

deviation of the brightness;

• Groups of bacteria, with low brightness and LoG values in

the total DNA channel, and possibly moderate signal on the

extracellular DNA channel due to possible co-localization

with NET fragments;

• Artifacts in the extracellular channel, With a moderate,

mostly homogeneous signal in the green channel;

• Unclassified ROIs, on the intracellular channel, not

matching any of the previous classes. This class includes

any potential artifacts in the intracellular channel.
Note that the set of features is smaller than the set of classes

thanks to a combinatorial approach to class characterization.
3.3 Classification workflow

The processing of a single fluorescent image with two channels (an

extracellular DNA channel and a total DNA channel) is represented

schematically in Figure 6. In the pre-processing stage, the user may

decide to use one of a number of filters provided by PartSeg (including

the Gaussian and the median filter) on any or both channels. In the

subsequent ROI detection stage, segmentation is performed on both

channels by simple thresholding and detecting connected components.

The brightness thresholds for both channels can be adjusted by the user

during an interactive session of PartSeg to obtain a segmentation that

matches a manual annotation.

In the first classification stage, Trapalyzer classifies ROIs on the

extracellular DNA channel. Small ROIs on the extracellular channel,

which typically correspond to neutrophils with a permeabilized plasma

membrane, are not processed at this stage. If an ROI has a sufficient size

and its average brightness and standard deviation are within user-

defined ranges, it is classified as a NET. Otherwise, it is flagged as an

“extracellular unknown” class, corresponding e.g. to artifacts caused by

autofluorescence, uneven brightness, or atypical NETs that require

manual inspection.

In the second classification stage, Trapalyzer classifies ROIs in

the total DNA channel. For each class, Trapalyzer computes a score

that measures whether a given ROI matches its user-defined

characterization. The general idea behind the class score is to

ensure that all of the ROI features are within appropriate ranges

for this class, with an error margin that allows some flexibility when

defining the ranges.

Formally, let x are the value of a particular feature (e.g.

brightness) of a given ROI, and let [l,u] are the acceptable interval

for this feature for a given class of ROIs (e.g. RUP neutrophils). For

a single feature, we define a partial score function S(x;l,u,s) where

the s parameter controls the extent of the error margins. The idea

behind the partial score function is that S(x;l,u,s) equals 1 if x∈[l,u]
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and falls smoothly to 0 is x becomes distant from the interval [l,u]

with the decrease rate controlled by s. Formally, we want S to be

equal to 0 either when x ≤ l − sl u−lu+l = l − Dl(s) or x ≥ u + su u−l
u+l =

u + Du(s). This way, the left and right error margins for the

characteristic range, Dl(s) and Du(s), adjust to the interval length

and its boundary values. Because of this, a single value of the error

margin parameter s can be set for all features regardless of their

units and typical values.

The properties described above are satisfied by the following

function, where l0 = l − Dl and u0 = u + Du define the range in

which we want S to have a non-zero value:

S(x;  l, u, s) =

1 if x ∈ ½l, u�
1
2 +

1
2 sin (p

x−l+Dl
Dl

− p
2 ) if x ∈ ½l0, l�

1
2 +

1
2 sin (p

x−u+Du
Du

− p
2 ) if x ∈ ½u, u0�

0 otherwise

8>>>>><
>>>>>:

To obtain a final score for a given class, we multiply the partial

scores for all the features of the analyzed ROI. This ensures that an

ROI fully matches a class when all the features are within or

sufficiently close to their acceptable ranges.

An ROI is determined as belonging to a given class if the score

for this class is sufficiently high (by default above 0.8), and the

scores for all the other classes are sufficiently low (by default below

0.4). The upper threshold for the scores of “competing” classes

ensures that an ROI is classified unambiguously. If an ROI does not

reach a sufficiently high score for any class, or reaches a high score

for more than one class, it is flagged as an unknown class that

requires a manual inspection.

During the second classification stage, we mask the regions

occupied by NETs and artifacts in the extracellular channel and

ignore ROIs in those regions. This is because, if a neutrophil lies
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within such a region, it is either difficult or impossible to accurately

distinguish whether or not it has a permeabilized plasma

membrane, and classification would therefore be unreliable. On

the other hand, the number of such ROIs is typically small

compared to the overall number of ROIs, and ignoring them had

a relatively small influence on the overall performance of

the software.

After both classification stages are completed, Trapalyzer

evaluates the quality of image annotation. We define the quality

score as Q = 100 · (1 − U=S) %, where U denotes the area covered

by unclassified ROIs and S denotes the area covered by all detected

ROIs. We use the areas of ROIs instead of their numbers to make

the score robust to small artifacts that otherwise do not interfere

with the analysis.
3.4 Validation on a benchmark data set

In order to assess Trapalyzer’s accuracy, we have compared it to

previously reported results achieved with convolutional neural

networks (CNNs) on a publicly available benchmark data set

(12). To match the original study, we have restricted the

classification to four classes: PMN, RUP and PER neutrophils and

NETs (the RUP neutrophils were referred to as decondensed in the

original work).

First, we tuned the parameters on 10 images selected from a

training data set. Then, we used Trapalyzer’s batch processing mode

to analyze a full validation data set of 57 images containing 1083

manually annotated objects. We compared the resulting annotation

with the manual one provided with the data set. We used an

Intersection over Union (IoU) threshold of 0.10, meaning that we

match objects if the overlap of their bounding boxes is at least 10%

of their joint area. The IoU value was based on previous results in

NET quantification (10, 12). In case of more than two ROIs with

overlapping bounding boxes, the pair with the highest IoU was

selected as a match.

3.4.1 Consistent image acquisition conditions are
crucial for automated image analysis

The results of Trapalyzer annotation are shown in Table 1, and

an example annotation is shown in Figure 7A. On average, 11.90%

of ROIs were unclassified in each image, with two images exceeding

50% due to atypically low brightness of cells, likely caused by a low

exposure time.

3.4.2 Simple classification workflow
achieves precision on par with
convolutional neural networks

Over all ROI classes, Trapalyzer achieved an average precision

of 95%, higher than 91% reported for the CNN classifier trained on

188 images. Precision varied slightly between classes, with the

highest equal 100% for RUP neutrophils, and the lowest equal

89% for PER neutrophils, caused by annotating some NETs as

neutrophils with permeabilized plasma membrane. Separating

NETs from PER neutrophils is difficult due to the gradual nature
FIGURE 6

A flowchart of Trapalyzer.
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of chromatin release into the extracellular environment, so

mismatches between the manual and automatic annotation are to

be expected.

3.4.3 Trapalyzer avoids uncertain classifications

We have achieved an average recall of 75%, lower than 93%

reported for the CNN. However, the recall varied greatly between
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classes, from 44% for RUP neutrophils up to 91% for PMN and PER

neutrophils. Approximately half of the RUP neutrophils were

flagged as an unknown ROI class, suggesting imperfect parameter

estimation from the training data set. This stands in agreement with

a philosophy that when parameters are misspecified, it is safer to

avoid classifying ROIs than to classify them wrong. Note that, in

practice, it is always possible to fine-tune the parameters on

additional images to increase the recall.
FIGURE 7

Examples of annotations of fluorescent microscopy images of NETs and neutrophils double-stained with Hoechst 33342 and SYTOX™ Green, with
neutrophils acquired from different patients, NET formation induced with different stimuli, and different microscope magnifications. (D, H) Trapalyzer
identified the following classes of objects: Red: Neutrophil Extracellular Traps; Green: PMN (polymorphonuclear) neutrophils; Light blue: RND
(rounded nuclei) neutrophils; Pink: RUP (ruptured nuclear envelope) neutrophils; Yellow: PER (permeabilized plasma membrane) neutrophils; Dark
blue: artifacts in the extracellular channel. (A–D) A fragment of an image from the benchmark data set (12). NET formation was triggered with 100
µM peroxynitrite. Scale bar = 75µm, magnification 400x. (E–H) A fragment of an image taken as a part of the neutrophil-E. coli co-culture study at
t=120 min with multiplicity of infection equal 1. Scale bar = 125µm magnification 100x. In this example, two closely located emerging NETs in the
bottom part of the image were flagged as a potential artifact for manual inspection due to low standard deviation of brightness in the extracellular
channel. Lowering the standard deviation threshold results in their proper classification as NETs.
TABLE 1 The results of an analysis of a publicly available benchmark data set of 57 fluorescent microscopic images.

Ground truth (manual annotation)

NET PMN neu RUP neu PER neu Unmatched Total predicted Precision

Trapalyzer NET 223 1 0 5 2 231 0.97

PMN neu 0 365 3 0 14 382 0.96

RUP neu 0 0 34 0 0 34 1.00

PER neu 16 0 4 200 5 225 0.89

Unknown 1 31 37 4 59 132 N/A

Unmatched 66 2 0 11 0 79 N/A

True
total

306 399 78 220 80 Avg=0.95

Recall 0.73 0.91 0.44 0.91 N/A Avg=0.75
fr
N/A, Not Applicable.
Shaded values: NETs and neutrophil cells. Values in bold: correctly classified ROIs.
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3.4.4 Quantifying NET area is more reliable than
NET count

The recall value for neutrophil extracellular traps was 73%,

caused by difficulties with matching Trapalyzer and manual

annotations. Inspecting selected images showed that Trapalyzer

missed fragments of NETs with a low brightness (on the verge of the

background signal), causing low IoU values due to large differences

between detected and manually generated bounding boxes.

Moreover, NETs tend to merge if released by closely located cells

and, although a human expert can detect such cases and identify

individual nets, our approach to segmentation treats them as a

single object. This agrees with observations made by other authors

that the numbers and areas of individual NETs are difficult to

quantify algorithmically, and quantifying the total image area

covered by NETs is more reliable (10).
3.5 A detailed analysis of a neutrophil-E.
coli co-culture

As an example application of Trapalyzer, we have performed a

detailed analysis of the 120 fluorescent microscopy images of

neutrophils incubated with or without E. coli bacteria, which we

used to establish quantifiable classes of ROIs in the previous

subsections. We have tuned the software’s parameters on a set of

selected 10 images and further adjusted them on images with large

numbers of unclassified ROIs. The correctness of annotation was

then validated by an expert on 5 images. An example annotation of

a fragment of an image is shown in Figure 7. In total, Trapalyzer

detected and annotated 16924 ROIs, including 10905

polymorphonuclear neutrophils, 733 neutrophils with a rounded

nucleus, 266 neutrophils with a ruptured nuclear envelope, 2742

neutrophils with a permeabilized plasma membrane, 344 NETs, 698

clumps of bacteria, 265 artifacts on the SYTOX™ Green

extracellular channel, and 971 unclassified components in the

Hoechst 33342 total DNA channel.

3.5.1 Population-level results support the current
model of NET formation

The total number of cells detected by Trapalyzer stayed

approximately constant over the duration of the experiment

(Supplementary Figure S2), in agreement with the fact that only a

few cells release NETs, showing that the experimental conditions

and image acquisition methods were consistent. We observed a

gradual decrease of the number of PMN neutrophils over time and

the transition to RND, RUP, and PER cell morphology types

(Supplementary Figure S1), in agreement with the observations

made for individual cells in (8). NETs were formed continuously

throughout the experiment and their number seemed to grow

linearly in all experimental conditions, including the control

group without bacteria (Supplementary Figure S2). However, the

rate of NET formation is higher in the co-cultures than in the

control, indicating that the presence of bacteria successfully induced

NET formation.
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3.5.2 ROI-level results suggest an additional
stage of NET formation

The properties of ROIs classified as neutrophils at different

stages of NET formation are shown in Figure 8. Different classes

were clearly separated by the ROI features used in our classification

workflow, which confirms their distinct natures. We observed a

gradual increase in cell size as NET formation progressed. The

average brightness was the highest for RND neutrophils, likely due

to chromatin decondensation and increased dye affinity, and

decreased after the rupture of the nuclear envelopewhen the

chromatin occupied a larger area. A visibly bi-modal distribution

of the brightness of RND neutrophils suggests that there may be an

additional stage NET formation, which causes this group to be

composed of two different types of cell morphologies. This

phenomenon requires further studies.

3.5.3 Mathematical modeling of the
dynamics of a neutrophil population
poses additional challenges

Neutrophils stayed viable for a prolonged period of time in the

negative control without bacteria. From the perspective of

mathematical modeling, this means that traditional models based

on ordinary differential equations may not be suitable to describe an

in vitro cultured population of neutrophils. More sophisticated

mathematical techniques,such as delay differential equations, may

be required to model the dynamics of NET formation in

such experiments.

3.5.4 A small number of false positives did not
influence the overall conclusions

The number of bacterial groups grew exponentially in time

when bacteria were present in the sample (Supplementary Figure

S2). This suggests that, in our experimental conditions, neutrophils

had a limited capability to eliminate pathogens. We have observed a

small number of false positive results in the control group without

bacteria. In 8 out of 40 images for this experimental condition there

were between one and three improperly detected clumps of bacteria,

corresponding to image artifacts and misclassified neutrophil cells.

In comparison, in the experimental condition with four bacterial

cells per neutrophil, there were up to 100 bacterial groups for t=180

min. As a consequence, the number of false positive detections of

bacterial clumps was comparatively small and did not influence the

overall conclusions.
4 Discussion

Software tools designed for the analysis of microscopic images

of neutrophils and neutrophil extrcellular traps (NETs) can be

roughly partitioned into two groups. The first group consists of

tools based on machine learning, such as convolutional neural

networks (CNNs) or support vector machines (SVMs). The

second group consists of tools based on classical image processing

techniques, such as edge detection, image filtering etc.
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Trapalyzer employs the latter approach. It detects ROIs using a

thresholding operation and classifies them as NETs, neutrophils at

different stages of NET formation, or clumps of bacteria based on a

handful of features such as ROI area and average brightness. An

ROI is assigned to a class if it matches it unambiguously according

to a scoring function.

Our reasons tomake Trapalyzermachine learning-free are twofold.

First, machine learning algorithms require extensive training data sets

on which they learn how to distinguish between different types of

objects. Preparing such a data set can take many days for a trained

expert. The algorithm is then capable of classifying objects in new

images only as long as their morphology closely resembles the objects

encountered in the training data set. This is particularly limiting in case

of NETs, because their morphologies may differ depending on the

experimental conditions, such as the substance used to stimulate

neutrophils to release the traps (7). Even minor changes in

experimental conditions, such as microscope magnification or

exposure time, may require a retraining of the algorithm by a

machine learning expert. This negates one of the purposes of such

tools, which is to make analyses easier, faster, and less laborsome.

Despite the varying morphology, NETs retain certain

characteristic features - large size, signal in the extracellular channel

- that can be used to detect and quantify them. Identifying such

features and using them in Trapalyzer makes the software more

robust to small variations in morphology and more general in terms

of applications to different experiments. A change in microscope

magnification or exposure time requires only a simple change of a few

parameters instead of retraining of the whole algorithm. On the other

hand, since the parameter values depend on the equipment used in a

particular laboratory, we do not include a default set of parameters in

Trapalyzer. Instead, we provide an easy to follow tutorial with a step-

by-step procedure of tuning them, available on the project’s website.

The second reason to avoid the use of machine learning algorithms

is that they typically operate on a black-box basis, meaning that the way

they arrive at their classification is unknown and often too complex to

be understood by humans (21). As a consequence, if a neural network

misclassifies a given type of ROIs in a given experiment, it is either

difficult or impossible to identify why this happens and how to fix it.
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On the other hand, digital image processing techniques and simplified

algorithms used in Trapalyzer provide control over the classification

process without sacrificing the precision of the results. The user may

freely decide which cell types are of interest in a given experiment and

which features to use for classification. If an ROIs is misclassified by

Trapalyzer, it is easy to check which parameter of the software has an

improper value and adjust it.

In this work, we detect and classify polymorphonuclear neutrophils

solely based on their size and average brightness. Due to their

characteristic shapes, some measure of ROI circularity could

potentially also be a characteristic feature of this morphology. Two

common measures of this feature are the ratio of the ROI area to

squared perimeter and the ratio of the ROI area to squared diameter.

However, none of those measures was capable of distinguishing

polymorphonuclear neutrophils from other stages of NET formation

and improve the accuracy of classification. This is because some

segments corresponding to those cells are elongated but otherwise

highly regular, and both circularity measures are high in such cases.We

did not find anymathematical characterization of the irregular shape of

polymorphonuclear neutrophils that would be useful for our purposes.

Trapalyzer is designed for studies based on double staining of

neutrophils with DNA-binding dyes and live imaging of unfixed

samples. Despite the characteristic morphology of NETs in such

images, their identification based solely on DNA staining may not

always be sufficient. This technique is complementary to, but not a

substitute of, immunohistological staining which confirms the

presence of characteristic proteins ornamenting DNA threads,

such as neutrophil elastase, histones, or myeloperoxidase.

Immunofluorescent labeling is especially important when novel or

uncommon inducers of NET release are studied (12, 13).

Nevertheless, once the formation of NETs is confirmed by

immunostaining, double-staining of the DNA provides a robust

and easy way to quantify the phenomenon of NET release.

To our knowledge, Trapalyzer is the only currently available

computer program capable of quantifying not only NETs in terms of

their number and area, but also the numbers of neutrophils at

different stages of NET formation, in experiments where extensive

training data sets are not available. Currently, Trapalyzer can only be
BA

FIGURE 8

Properties of ROIs classified as neutrophils at different stages of NET formation. (A) ROI area (in number of pixels). (B) Average pixel brightness in the
total DNA channel. The third feature, average brightness on the extracellular channel, had a non-zero value only for the neutrophils with
permeabilized plasma membrane. Abbreviations of NET formation stages: PMN, polymorphonuclear; RND, rounded nuclei; RUP, ruptured nuclear
envelope; PER, permeabilized plasma membrane.
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applied to cultures of isolated neutrophils. Extending the software

capabilities to handle co-incubation of neutrophils with other types of

cells, e.g. cancer cells, is a potential direction of future developments.
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