75 research outputs found

    Delayed Scattering of Solitary Waves from Interfaces in a Granular Container

    Full text link
    In granular media, the characterization of the behavior of solitary waves around interfaces is of importance in order to look for more applications of these systems. We study the behavior of solitary waves at both interfaces of a symmetric granular container, a class of systems that has received recent attention because it posses the feature of energy trapping. Hertzian contact is assumed. We have found that the scattering process is elastic at one interface, while at the other interface it is observed that the transmitted solitary wave has stopped its movement during a time that gets longer when the ratio between masses at the interfaces increases. The origin of this effect can be traced back to the phenomenon of gaps opening, recently observed experimentally.Comment: To appear in Physical Review E, vol 7

    Tunability of solitary wave properties in one dimensional strongly nonlinear phononic crystals

    Get PDF
    One dimentional strongly nonlinear phononic crystals were assembled from chains of PTFE (polytetrafluoroethylene) and stainless steel spheres with gauges installed inside the beads. Trains of strongly nonlinear solitary waves were excited by an impact. A significant modification of the signal shape and an increase of solitary wave speed up to two times (at the same amplitude of dynamic contact force)were achieved through a noncontact magnetically induced precompression of the chains. Data for PTFE based chains are presented for the first time and data for stainless steel based chains were extended into a smaller range of amplitudes by more than one order of magnitude than previously reported. Experimental results were found to be in reasonable agreement with the long wave approximation and with numerical calculations based on Hertz interaction law for discrete chains.Comment: 36 pages, 7 figure

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Solvation free energy profile of the SCN- ion across the water-1,2-dichloroethane liquid/liquid interface. A computer simulation study

    Get PDF
    The solvation free energy profile of a single SCN- ion is calculated across the water-1,2-dichloroethane liquid/liquid interface at 298 K by the constraint force method. The obtained results show that the free energy cost of transferring the ion from the aqueous to the organic phase is about 70 kJ/mol, The free energy profile shows a small but clear well at the aqueous side of the interface, in the subsurface region of the water phase, indicating the ability of the SCN- ion to be adsorbed in the close vicinity of the interface. Upon entrance of the SCN- ion to the organic phase a coextraction of the water molecules of its first hydration shell occurs. Accordingly, when it is located at the boundary of the two phases the SCN- ion prefers orientations in which its bulky S atom is located at the aqueous side, and the small N atom, together with its first hydration shell, at the organic side of the interface
    corecore