161,576 research outputs found

    Demand for Money in the Asian Countries: A Systems GMM Panel Data Approach and Structural Breaks

    Get PDF
    A systems GMM method is used to estimate the demand for money (M1) for a panel of 11 Asian countries from 1970 to 2007. This method has advantages of which the most important one is its ability to minimise small sample bias with persistence in the variables. This system GMM method of Blundell and Bond (1998) simultaneously estimates specifications with the levels and first differences specifications of the variables. We test for structural stability of the estimated function with a recently developed test, for this approach, by Mancini-Griffoli and Pauwels (2006). Our results show that there is a well defined demand for money for these countries and there are no structural breaks.Systems GMM, Blundell and Bond, Mancini-Griffoli and Pauwels, Asian Countries and Demand for Money and Structural Sta

    Effects of two-site composite excitations in the Hubbard model

    Full text link
    The electronic states of the Hubbard model are investigated by use of the Composite Operator Method. In addition to the Hubbard operators, two other operators related with two-site composite excitations are included in the basis. Within the present formulation, higher-order composite excitations are reduced to the chosen operatorial basis by means of a procedure preserving the particle-hole symmetry. The positive comparison with numerical simulations for the double occupancy indicates that such approximation improves over the two-pole approximation.Comment: 2 pages, 1 figur

    Study of the spin-32\frac32 Hubbard-Kondo lattice model by means of the Composite Operator Method

    Full text link
    We study the spin-32\frac32 Hubbard-Kondo lattice model by means of the Composite Operator Method, after applying a Holstein-Primakov transformation. The spin and particle dynamics in the ferromagnetic state are calculated by taking into account strong on-site correlations between electrons and antiferromagnetic exchange among 32\frac32 spins, together with usual Hund coupling between electrons and spins

    Magnetic behavior of a spin-1 Blume-Emery-Griffiths model

    Full text link
    I study the one-dimensional spin-1 Blume-Emery-Griffiths model with bilinear and biquadratic exchange interactions and single-ion crystal field under an applied magnetic field. This model can be exactly mapped into a tight-binding Hubbard model - extended to include intersite interactions - provided one renormalizes the chemical and the on-site potentials, which become temperature dependent. After this transformation, I provide the exact solution of the Blume-Emery-Griffiths model in one dimension by means of the Green's functions and equations of motion formalism. I investigate the magnetic variations of physical quantities - such as magnetization, quadrupolar moment, susceptibility - for different values of the interaction parameters and of the applied field, focusing on the role played by the biquadratic interaction in the breakdown of the magnetization plateaus.Comment: 4 pages, 5 figures. ICM 2009 (Karlsruhe) Conference proceeding

    Features of the Extension of a Statistical Measure of Complexity to Continuous Systems

    Full text link
    We discuss some aspects of the extension to continuous systems of a statistical measure of complexity introduced by Lopez-Ruiz, Mancini and Calbet (LMC) [Phys. Lett. A 209 (1995) 321]. In general, the extension of a magnitude from the discrete to the continuous case is not a trivial process and requires some choice. In the present study, several possibilities appear available. One of them is examined in detail. Some interesting properties desirable for any magnitude of complexity are discovered on this particular extension.Comment: 22 pages, 0 figure

    Different orderings in the narrow-band limit of the extended Hubbard model on the Bethe lattice

    Full text link
    We present the exact solution of a system of Fermi particles living on the sites of a Bethe lattice with coordination number z and interacting through on-site U and nearest-neighbor V interactions. This is a physical realization of the extended Hubbard model in the atomic limit. Within the Green's function and equations of motion formalism, we provide a comprehensive analysis of the model and we study the phase diagram at finite temperature in the whole model's parameter space, allowing for the on-site and nearest-neighbor interactions to be either repulsive or attractive. We find the existence of critical regions where charge ordering (V>0) and phase separation (V<0) are observed. This scenario is endorsed by the study of several thermodynamic quantities.Comment: 17 pages, 20 figure
    corecore