7,553 research outputs found

    Moser-Trudinger inequality on conformal discs

    Full text link
    We show that the Moser-Trudinger inequality holds in a conformal disc if and only if the metric is bounded from above by the Hyperbolic metric. We also find a necessary and sufficient condition for the Moser-Trudinger inequality to hold in an unbounded subset of the two dimensional Euclidean space

    Equations of motion approach to the spin-1/2 Ising model on the Bethe lattice

    Full text link
    We exactly solve the ferromagnetic spin-1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed, that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coordination number z. Non-local correlation functions up to four points are also provided together with a study of the relevant thermodynamic quantities.Comment: RevTex, 29 pages, 13 figure

    Determination of maximal Gaussian entanglement achievable by feedback-controlled dynamics

    Get PDF
    We determine a general upper bound for the steady-state entanglement achievable by continuous feedback for systems of any number of bosonic degrees of freedom. We apply such a bound to the specific case of parametric interactions - the most common practical way to generate entanglement in quantum optics - and single out optimal feedback strategies that achieve the maximal entanglement. We also consider the case of feedback schemes entirely restricted to local operations and compare their performance to the optimal, generally nonlocal, schemes.Comment: 4 pages. Published versio

    Reconstructing the density operator by using generalized field quadratures

    Full text link
    The Wigner function for one and two-mode quantum systems is explicitely expressed in terms of the marginal distribution for the generic linearly transformed quadratures. Then, also the density operator of those systems is written in terms of the marginal distribution of these quadratures. Some examples to apply this formalism, and a reduction to the usual optical homodyne tomography are considered.Comment: 17 pages, Latex,accepted by Quantum and Semiclassical Optic

    Continuous quantum nondemolition feedback and unconditional atomic spin squeezing

    Get PDF
    We discuss the theory and experimental considerations of a quantum feedback scheme for producing deterministically reproducible spin squeezing. Continuous nondemolition atom number measurement from monitoring a probe field conditionally squeezes the sample. Simultaneous feedback of the measurement results controls the quantum state such that the squeezing becomes unconditional. We find that for very strong cavity coupling and a limited number of atoms, the theoretical squeezing approaches the Heisenberg limit. Strong squeezing will still be produced at weaker coupling and even in free space (thus presenting a simple experimental test for quantum feedback). The measurement and feedback can be stopped at any time, thereby freezing the sample with a desired amount of squeezing.Comment: 17 pages, 5 figures, submitted to JP

    Transmitting qudits through larger quantum channels

    Full text link
    We address the problem of transmitting states belonging to finite dimensional Hilbert space through a quantum channel associated with a larger (even infinite dimensional) Hilbert space.Comment: 5 pages, ReVTeX, minor changes, to appear in J. Phys.

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
    • …
    corecore