260 research outputs found

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    Spin-dependent diffraction at ferromagnetic/spin spiral interface

    Get PDF
    Spin-dependent transport is investigated in ballistic regime through the interface between a ferromagnet and a spin spiral. We show that spin-dependent interferences lead to a new type of diffraction called "spin-diffraction". It is shown that this spin-diffraction leads to local spin and electrical currents along the interface. This study also shows that in highly non homogeneous magnetic configuration (non adiabatic limit), the contribution of the diffracted electrons is crucial to describe spin transport in such structures

    Crossover from Diffusive to Superfluid Transport in Frustrated Magnets

    Full text link
    We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accounting for both nearest neighbor and next-nearest neighbor exchange interactions with easy-plane anisotropy, we perform atomistic spin simulations on a two-terminal configuration across the full magnetic phase diagram. We found that as long as the ground state magnetic moments remain in-plane, irrespective of whether the magnetic configuration is ferromagnetic, collinear or non-collinear antiferromagnetic, the system exhibits spin superfluid behavior with a device output that is independent on the value of the exchange interactions. When the magnetic frustration is large enough to compete with the easy-plane anisotropy and cant the magnetic moments out of the plane, the spin transport progressively evolves towards the diffusive regime. The robustness of spin superfluidity close to magnetic phase boundaries is investigated and we uncover the possibility for {\em proximate} spin superfluidity close to the ferromagnetic transition.Comment: 9 pages, 7 figure

    Theory of laser-induced demagnetization at high temperatures

    Full text link
    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins and lattice. Assuming that the demagnetization processes take place during the thermalization of the sub-systems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnons and electron-phonons interaction, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat assisted magnetic recording.Comment: 11 Pages, 7 Figure

    Description of current-driven torques in magnetic tunnel junctions

    Get PDF
    A free electron description of spin-dependent tranport in magnetic tunnel junctions with non collinear magnetizations is presented. We investigate the origin of transverse spin density in tunnelling transport and the quantum interferences which give rise to oscillatory torques on the local magnetization. Spin transfer torque is also analyzed and an important bias asymmetry is found as well as a damped oscillatory behaviour. Furthermore, we investigate the influence of the s-d exchange coupling on torque in particular in the case of half-metallic MTJ in which the spin transfer torque is due to interfacial spin-dependent reflections

    Experimental observation of the optical spin-orbit torque

    Full text link
    Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap with arXiv:1101.104

    Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT

    Full text link
    In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analyzed in terms of complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure

    Backward error analysis and the substitution law for Lie group integrators

    Full text link
    Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called Lie--Butcher series. This paper presents the theory of backward error analysis for methods based on Lie--Butcher series.Comment: Minor corrections and additions. Final versio

    Renormalization: a quasi-shuffle approach

    Full text link
    In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process
    corecore