2 research outputs found

    Reversible Disruption of Pre-Pulse Inhibition in Hypomorphic-Inducible and Reversible CB1-/- Mice

    Get PDF
    Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes). Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout (-/-) mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1-/-) only in absence of doxycycline (Dox). In such mice, under Dox+ or vehicle, as well as in wild-type (WT) and CB1-/-, two endophenotypes motor activity (increased in animal models of schizophrenia) and pre-pulse inhibition (PPI) of startle reflex (disrupted in schizophrenia) were analyzed. Both CB1-/- and IRh-CB1-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1-/- animals, was on the contrary highly and significantly disrupted only in Dox+ IRh-CB1-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in schizophrenia and in other psychiatric disorders

    Peripheral blood mononuclear cells reactivity in recent-onset type I diabetes patients is directed against the leader peptide of preproinsulin, GAD65271-285 and GAD65431-450

    No full text
    IntroductionT cell reactivity against pancreatic autoantigens is considered one of the main contributors to the destruction of insulin-producing cells in type 1 diabetes (T1D). Over the years, peptide epitopes derived from these autoantigens have been described in NOD mice and in both HLA class II transgenic mice and humans. However, which ones are involved in the early onset or in the progressive phases of the disease is still unclear. MethodsIn this work we have investigated, in early-onset T1D pediatric patients and HLA-matched controls from Sardinia, the potential of preproinsulin (PPI) and glutamate decarboxylase 65 (GAD65)-derived peptides to induce spontaneous T cell proliferation responses of peripheral blood mononuclear cells (PBMCs). ResultsSignificant T cell responses against PPI1-18, PPI7-19 and PPI31-49, the first two belonging to the leader sequence of PPI, and GAD65271-285 and GAD65431-450, were found in HLA-DR4, -DQ8 and -DR3, -DQ2 T1D children. ConclusionsThese data show that cryptic epitopes from the leader sequence of the PPI and GAD65271-285 and GAD65431-450 peptides might be among the critical antigenic epitopes eliciting the primary autoreactive responses in the early phases of the disease. These results may have implications in the design of immunogenic PPI and GAD65 peptides for peptide-based immunotherapy
    corecore