28 research outputs found

    Maternal Manganese Restriction Increases Susceptibility to High-Fat Diet-Induced Dyslipidemia and Altered Adipose Function in WNIN Male Rat Offspring

    Get PDF
    Growth in utero is largely a reflection of nutrient and oxygen supply to the foetus. We studied the effects of Mn restriction per se, maternal Mn restriction, and postnatal high-fat feeding in modulating body composition, lipid metabolism and adipocyte function in Wistar/NIN (WNIN) rat offspring. Female weanling, WNIN rats received ad libitum for 4 months, a control or Mn-restricted diet and were mated with control males. Some restricted mothers were rehabilitated with control diet from conception (MnRC) or parturition (MnRP), and their offspring were raised on control diet. Some restricted offspring were weaned onto control diet (MnRW), while others continued on restricted diet throughout (MnR). A set of offspring from each group was fed high-fat diet from 9 months onwards. Body composition, adipocytes function, and lipid metabolism were monitored in male rat offspring at regular intervals. Maternal manganese restriction increased the susceptibility of the offspring to high-fat-induced adiposity, dyslipidaemia, and a proinflammatory state but did not affect their glycemic or insulin status

    High Resolution Methylome Map of Rat Indicates Role of Intragenic DNA Methylation in Identification of Coding Region

    Get PDF
    DNA methylation is crucial for gene regulation and maintenance of genomic stability. Rat has been a key model system in understanding mammalian systemic physiology, however detailed rat methylome remains uncharacterized till date. Here, we present the first high resolution methylome of rat liver generated using Methylated DNA immunoprecipitation and high throughput sequencing (MeDIP-Seq) approach. We observed that within the DNA/RNA repeat elements, simple repeats harbor the highest degree of methylation. Promoter hypomethylation and exon hypermethylation were common features in both RefSeq genes and expressed genes (as evaluated by proteomic approach). We also found that although CpG islands were generally hypomethylated, about 6% of them were methylated and a large proportion (37%) of methylated islands fell within the exons. Notably, we obeserved significant differences in methylation of terminal exons (UTRs); methylation being more pronounced in coding/partially coding exons compared to the non-coding exons. Further, events like alternate exon splicing (cassette exon) and intron retentions were marked by DNA methylation and these regions are retained in the final transcript. Thus, we suggest that DNA methylation could play a crucial role in marking coding regions thereby regulating alternative splicing. Apart from generating the first high resolution methylome map of rat liver tissue, the present study provides several critical insights into methylome organization and extends our understanding of interplay between epigenome, gene expression and genome stability

    Effect of maternal vitamin and mineral restrictions on the body fat content and adipocytokine levels of WNIN rat offspring

    No full text
    Abstract Background Intrauterine growth retardation due to maternal under-nutrition increases susceptibility to obesity and insulin resistance. We reported earlier in the offspring of mineral or vitamin restricted rat dams, a high body fat percentage and decreased insulin secretion to glucose challenge. This study determined whether or not central adiposity and altered adipocytokine profile were associated with high body fat content. Methods Body fat percentage; glucose, insulin and adipocytokine levels in fasting plasma and fresh weights of epididymal fat pads were determined in the six months old male offspring of Wistar NIN rat dams on chronic 50 percent restriction of vitamins or minerals throughout their growth, gestation, lactation and weaned on to restricted diets or restricted mothers/offspring rehabilitated from different time points. Results In line with high body fat percent, chronic restriction of vitamins and minerals increased the epididymal fat pad weight. Maternal vitamin restriction decreased plasma adiponectin and increased leptin levels whereas mineral restriction decreased both. Both the treatments did not affect plasma TNF-α levels or insulin resistance status (HOMA-IR). Rehabilitation from parturition but not weaning, rescued the changes in the offspring. Conclusion High body fat percentage in the offspring of vitamin restricted or mineral restricted rat dams was associated with increased abdominal adiposity (epididymal fat pad weight) and differential expression of adipocytokines but not insulin resistance. The changes could be mitigated by rehabilitation from birth but not weaning.</p

    High sucrose diet induced diabetes in WNIN/Gr-Ob obese rats: Biochemical and histological changes

    Get PDF
    149-157Acceleration of natural ageing occurs due to multiple reasons such as stress, obesity and Type 2 diabetes working in a vicious cycle. In the present study, we tested if superimposing type 2 diabetes in a rat model of obesity accelerates ageing or not. We aggravated insulin resistance/ induced type 2 diabetes by feeding high sucrose diet (HSD) to 9-10 wk old, male, WNIN/Gr-Ob obese rats. We report here the changes in physiological, biochemical and histological parameters after 3 and 6 months of feeding. Rats fed HSD had the highest insulin resistance as evident from increased HOMA IR and AUC insulin during OGTT. Body weight gain and Food efficiency ratio (FER) were also significantly higher in HSD fed than the control rats after 6 months of feeding. Further, liver steatosis and kidney damage were the highest in the HSD fed rats as evident from ORO staining. Interestingly, HSD fed rats also had the highest intensity of ß-cell staining and functioning (as indicated by higher HOMA-ß). The findings indicate that parameters associated with ageing were accelerated in WNIN/Gr-Ob rats fed HSD, implying that aggravating insulin resistance in obese rats may be associated with accelerated ageing

    Chronic Maternal Vitamin B12 Restriction Induced Changes in Body Composition & Glucose Metabolism in the Wistar Rat Offspring Are Partly Correctable by Rehabilitation

    No full text
    <div><p>Maternal under-nutrition increases the risk of developing metabolic diseases. We studied the effects of chronic maternal dietary vitamin B12 restriction on lean body mass (LBM), fat free mass (FFM), muscle function, glucose tolerance and metabolism in Wistar rat offspring. Prevention/reversibility of changes by rehabilitating restricted mothers from conception or parturition and their offspring from weaning was assessed. Female weaning Wistar rats (n = 30) were fed <i>ad libitum</i> for 12 weeks, a control diet (n = 6) or the same with 40% restriction of vitamin B12 (B12R) (n = 24); after confirming deficiency, were mated with control males. Six each of pregnant B12R dams were rehabilitated from conception and parturition and their offspring weaned to control diet. While offspring of six B12R dams were weaned to control diet, those of the remaining six B12R dams continued on B12R diet. Biochemical parameters and body composition were determined in dams before mating and in male offspring at 3, 6, 9 and 12 months of their age. Dietary vitamin B12 restriction increased body weight but decreased LBM% and FFM% but not the percent of tissue associated fat (TAF%) in dams. Maternal B12R decreased LBM% and FFM% in the male offspring, but their TAF%, basal and insulin stimulated glucose uptake by diaphragm were unaltered. At 12 months age, B12R offspring had higher (than controls) fasting plasma glucose, insulin, HOMA-IR and impaired glucose tolerance. Their hepatic gluconeogenic enzyme activities were increased. B12R offspring had increased oxidative stress and decreased antioxidant status. Changes in body composition, glucose metabolism and stress were reversed by rehabilitating B12R dams from conception, whereas rehabilitation from parturition and weaning corrected them partially, highlighting the importance of vitamin B12 during pregnancy and lactation on growth, muscle development, glucose tolerance and metabolism in the offspring.</p></div
    corecore