73 research outputs found

    Existence of periodic orbits in nonlinear oscillators of Emden-Fowler form

    Get PDF
    The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden-Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden-Fowler equation are discussed in the same contextComment: 13 pages, 5 figures, title changed and content extended, version accepted at Phys. Lett.

    Pulses and Snakes in Ginzburg--Landau Equation

    Get PDF
    Using a variational formulation for partial differential equations (PDEs) combined with numerical simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of dissipative solitons, and analyze the dependence of both their shape and stability on the physical parameters of the cubic-quintic Ginzburg-Landau equation (CGLE). In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal very interesting bifurcations sequences as the parameters of the CGLE are varied. Our predictions on the variation of the soliton amplitude, width, position, speed and phase of the solutions using the variational formulation agree with simulation results.Comment: 30 pages, 14 figure

    Shifted one-parameter supersymmetric family of quartic asymmetric double-well potentials

    Get PDF
    Extending our previous work (Rosu, Mancas, Chen, Ann.Phys. 343 (2014) 87-102), we define supersymmetric partner potentials through a particular Riccati solution of the form F(x)=(x-c)^2-1, where c is a real shift parameter, and work out the quartic double-well family of one-parameter isospectral potentials obtained by using the corresponding general Riccati solution. For these parametric double well potentials, we study how the localization properties of the two wells depend on the parameter of the potentials for various values of the shifting parameter. We also consider the supersymmetric parametric family of the first double-well potential in the Razavy chain of double well potentials corresponding to F(x)=(1/2)sinh 2x-2(1+sqrt 2)sinh 2x/[(1+sqrt 2) cosh 2x+1], both unshifted and shifted, to test and compare the localization propertiesComment: 11 pages, 4 figures, published versio

    Traveling wave solutions for wave equations with two exponential nonlinearities

    Full text link
    We use a simple method that leads to the integrals involved in obtaining the traveling wave solutions of wave equations with one and two exponential nonlinearities. When the constant term in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained while when that term is nonzero all the basic traveling wave solutions of Liouville, Tzitzeica and their variants, as well as sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear physics and dynamical systems are found through a detailed study of the corresponding elliptic equationsComment: 9 pages, 7 figures, 42 references, version matching the published articl

    Nongauge bright soliton of the nonlinear Schrodinger (NLS) equation and a family of generalized NLS equations

    Get PDF
    We present an approach to the bright soliton solution of the NLS equation from the standpoint of introducing a constant potential term in the equation. We discuss a `nongauge' bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sech^p solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries and Benjamin-Bona-Mahony equations when p=2Comment: ~4 pages, 3 figures, 16 references, published versio

    One-parameter Darboux-deformed Fibonacci numbers

    Get PDF
    One-parameter Darboux deformations are effected for the simple ODE satisfied by the continuous generalizations of the Fibonacci sequence recently discussed by Faraoni and Atieh [Symmetry 13, 200 (2021)], who promoted a formal analogy with the Friedmann equation in the FLRW homogeneous cosmology. The method allows the introduction of deformations of the continuous Fibonacci sequences, hence of Darboux-deformed Fibonacci (non integer) numbers. Considering the same ODE as a parametric oscillator equation, the Ermakov-Lewis invariants for these sequences are also discussed.Comment: 7 pages, 4 figure
    • …
    corecore