37 research outputs found
Maternal Mediterranean diet in pregnancy and newborn DNA methylation:a meta-analysis in the PACE Consortium
Data de publicació electrònica: 02-03-2022Higher adherence to the Mediterranean diet during pregnancy is related to a lower risk of preterm birth and to better offspring cardiometabolic health. DNA methylation may be an underlying biological mechanism. We evaluated whether maternal adherence to the Mediterranean diet was associated with offspring cord blood DNA methylation.We meta-analysed epigenome-wide association studies (EWAS) of maternal adherence to the Mediterranean diet during pregnancy and offspring cord blood DNA methylation in 2802 mother-child pairs from five cohorts. We calculated the relative Mediterranean diet (rMED) score with range 0-18 and an adjusted rMED excluding alcohol (rMEDp, range 0-16). DNA methylation was measured using Illumina 450K arrays. We used robust linear regression modelling adjusted for child sex, maternal education, age, smoking, body mass index, energy intake, batch, and cell types. We performed several functional analyses and examined the persistence of differential DNA methylation into childhood (4.5-7.8 y).rMEDp was associated with cord blood DNA methylation at cg23757341 (0.064% increase in DNA methylation per 1-point increase in the rMEDp score, SE = 0.011, P = 2.41 × 10-8). This cytosine-phosphate-guanine (CpG) site maps to WNT5B, associated with adipogenesis and glycaemic phenotypes. We did not identify associations with childhood gene expression, nor did we find enriched biological pathways. The association did not persist into childhood.In this meta-analysis, maternal adherence to the Mediterranean diet (excluding alcohol) during pregnancy was associated with cord blood DNA methylation level at cg23757341. Potential mediation of DNA methylation in associations with offspring health requires further study.This work was supported by the Foundation for the National Institutes of Health [R01 HD034568, UH3 OD023286, R01 NR013945, R01 HL111108]; Joint Programming Initiative A healthy diet for a healthy life [529051023, MR/S036520/1, 529051022, MR/S036520/1, MR/S036520/1]; National Institute of Environmental Health Sciences [R00ES025817]; National institute of diabetes and digestive and kidney diseases [R01DK076648]; National Institutes of Health Office of the Director [UH3OD023248]; Horizon 2020 research and innovation [874739, 733206, 848158, 824989]; Medical Research Council [MR/S009310/1]
Associations Between Late Pregnancy Dietary Inflammatory Index (DII) and Offspring Bone Mass: A Meta-Analysis of the Southampton Women's Survey (SWS) and the Avon Longitudinal Study of Parents and Children (ALSPAC).
Systemic inflammation is associated with reduced bone mineral density and may be influenced by pro-inflammatory diets. We undertook an observational analysis of associations between late pregnancy energy-adjusted dietary inflammatory index (E-DII) scores and offspring bone outcomes in childhood. E-DII scores (higher scores indicating pro-inflammatory diets) were derived from food frequency questionnaires in late pregnancy in two prospective mother-offspring cohorts: the Southampton Women's Survey (SWS) and the Avon Longitudinal Study of Parents and Children (ALSPAC). The mean (SD) offspring age at dual-energy X-ray absorptiometry (DXA) scanning was 9.2 (0.2) years. Linear regression was used to assess associations between E-DII and bone outcomes, adjusting for offspring sex and age at DXA and maternal age at childbirth, educational level, pre-pregnancy body mass index (BMI), parity, physical activity level, and smoking in pregnancy. Associations were synthesized using fixed-effect meta-analysis. Beta coefficients represent the association per unit E-DII increment. In fully adjusted models (total n = 5910) late pregnancy E-DII was negatively associated with offspring whole body minus head bone area (BA: β = -3.68 [95% confidence interval -6.09, -1.27] cm2 /unit), bone mineral content (BMC: β = -4.16 [95% CI -6.70, -1.62] g/unit), and areal bone mineral density (aBMD: β = -0.0012 [95% CI -0.0020, -0.0004] g.cm-2 /unit), but there was only a weak association with BMC adjusted for BA (β = -0.48 [95% CI -1.11, 0.15] g/unit) at 9 years. Adjustment for child height partly or, for weight, fully attenuated the associations. Higher late pregnancy E-DII scores (representing a more pro-inflammatory diet) are negatively associated with offspring bone measures, supporting the importance of maternal and childhood diet on longitudinal offspring bone health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)
A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation
This is the final version. Available on open access from Routledge via the DOI in this record. Data availability statement:
Analysis plan and R code for cohort-specific analyses and meta-analyses are available via https://github.com/GiuliettaMonasso/PACE-B12-meta-analysis-of-EWAS.
The dataset(s) supporting the conclusions of this article is available in the [Zenodo repository]. All further relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request and subject to the study-specific data access procedures. Requests for access to the individual-level data for ALSPAC can be directed to GCS: [email protected]. Requests for access to the individual-level data for GENR can be directed to JFF: [email protected]. Requests for access to the individual-level data for INMA can be directed to MB: [email protected]. Requests for access to the individual-level data for MARBLES can be directed to RJS: [email protected]. Requests for access to the individual-level data for MoBa1 and MoBa2 can be directed to SEH: [email protected] vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.Medical Research Council (MRC)European Research Council (ERC
A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p
A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p
Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation.
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordCode availability:
The code used for this EWAS meta-analysis is available from the corresponding authors upon reasonable request.Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.Medical Research Council and Wellcome Trus
A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation
This is the final version. Available on open access from Nature Research via the DOI in this recordData availability:
Blood samples and raw genetic data of neonatal subjects from each cohort are governed by their respective institutions and/or government agencies, and mostly could not be shared publicly without specific approvals. For example, for data from first author cohort, California Childhood Leukemia Study (CCLS), we respectfully are unable to share raw, individual genetic data freely with other investigators. Should we be contacted by other investigators who would like to use the data; we will direct them to the California Department of Public Health Institutional Review Board to establish their own approved protocol to utilize the data, which can then be shared peer-to-peer.Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.National Institute of Environmental Health SciencesNational Cancer InstituteUS Environmental Protection Agenc
A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation.
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends
Effects Of Variation Of The Color Characteristics Of Lighting Sources By The Environmental Context
Over recent years the importance of using daylight in indoor environments to achieve reductions of energy consumption was largely discussed, but the use of
daylight is even more important because of its effects on human beings.
Daylight has a more uniform spectral distribution than the artificial sources (especially discharge lamps) and consequently it allows a better color perception;
moreover it changes during the day both in intensity and spectral power distribution (SPD).
For all these reasons, daylight ensures a high comfort in carrying out all the human activities and is also important to the circadian rhythm regulation; therefore it results necessary to evaluate the entrance of natural light in indoor environments both in qualitative and quantitative terms.
Until now, the approach was mainly based on the daylight factor (DF) value, while the spectral composition of radiations coming from the sky was not considered. A
proper use of daylight in indoor environments requires integration with electric lighting. Nowadays a designer can choose light sources with the most appropriate
color tone, expressed by means of correlated color temperature (CCT); for indoor applications, the most popular are mainly fluorescent and LED sources, each
disposable with different CCT. However, lit environments can be perceived differently under sources with the same CCT but different SPDs.
In this paper, an analysis of the characteristics of daylight and electric lighting in an indoor environment is carried out, by comparing SPDs and CCTs of the natural
source (sky) during typical winter days with contemporaneous measurements of spectral irradiances and CCTs detected at the eyes level.
From results obtained, the influence of indoor environment over spectral distribution of radiations, both from daylight and electric light, was evaluated