9,933 research outputs found
Response to âComment on âElasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensemblesââ [J. Chem. Phys. 138, 157101 (2013)]
No abstract: this is a "response" to a Comment
Monte Carlo simulations of single polymer force-extension relations
We present Monte Carlo simulations for studying the statistical mechanics of arbitrarily long single molecules under stretching. In many cases in which the thermodynamic
limit is not satisfied, different statistical ensembles yield different macroscopic force-displacement
curves. In this work we provide a description of the Monte Carlo simulations and discuss in
details the assumptions adopted
Recommended from our members
Experimental and numerical investigation on forced convection in circular tubes with nanofluids
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this paper an experimental and numerical study to investigate the convective heat transfer
characteristics of fully developed turbulent flow of a waterâAl2O3 nanofluid in a circular tube is presented.
The numerical simulations are accomplished on the experimental test section configuration. In the analysis,
the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional and steady state. The
single-phase model is employed to model the nanofluid mixture and k-Δ model is used to describe the
turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates
and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and
Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all
nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer
coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher
concentrations whereas Nusselt numbers present lower values than the ones for pure water
Studies of Efficiency of the LHCb Muon Detector Using Cosmic Rays
We study the efficiency of the muon detector using the cosmic ray events collected in the summer and autumn 2008. We find that the efficiencies in all stations are consistent with 100% for cosmic tracks coming from the LHCb interaction point, without any restriction on time. We calculate the efficiencies also per station and region and per station and quadrant, finding consistent results
Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness
Essential oils are natural products that have great antimicrobial potential value against many fungi and bacteria. Rosa damascena Mill. is one of the most important aromatic species of the Rosaceae family from which essential oil and economically valuable products can be obtained. The present study was designed to investigate the major compositions of the essential oil of this plant in Isfahan region of Iran and to identify its antibacterial and antifungal effects against 11 microorganisms causing human diseases and food spoilage. The essential oil was extracted by using the Clevenger apparatus and was analyzed by gas chromatography-mass spectrometry (GCâMS) technique. Its antimicrobial activity was evaluated by well diffusion, minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC). The results showed that the most important compounds of the essential oil were nonadecane (24.72%), heneicosane (19.325%), oleic acid (17.63%), and citronellol (12.61%). The results also showed that the highest inhibition zone of rose essential oil was against Aspergillus brasiliensis (15.00 ± 0.00 mm) and had a significant effect on Klebsiella pneumoniae (~ 8.00 mm). Also the rose oil had a significant inhibition and lethal effect against Candida albicans (MIC and MBC ~ 125 ÎŒg/mL), which is equivalent to the nystatin antibiotic (~ 125 ÎŒg/mL). Therefore, the essential oil of Damask rose can be considered as an alternative natural product for the prevention and treatment of fungal diseases in humans and against food spoilage as well
Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures
Obtaining high-quality thin films of 5d transition metal oxides is essential
to explore the exotic semimetallic and topological phases predicted to arise
from the combination of strong electron correlations and spin-orbit coupling.
Here, we show that the transport properties of SrIrO3 thin films, grown by
pulsed laser deposition, can be optimized by considering the effect of
laser-induced modification of the SrIrO3 target surface. We further demonstrate
that bare SrIrO3 thin films are subject to degradation in air and are highly
sensitive to lithographic processing. A crystalline SrTiO3 cap layer deposited
in-situ is effective in preserving the film quality, allowing us to measure
metallic transport behavior in films with thicknesses down to 4 unit cells. In
addition, the SrTiO3 encapsulation enables the fabrication of devices such as
Hall bars without altering the film properties, allowing precise
(magneto)transport measurements on micro- and nanoscale devices.Comment: 5 pages, 3 figure
Perioperative hemodynamic goal-directed therapy and mortality: a systematic review and meta-analysis with meta-regression
INTRODUCTION: Recent data found that perioperative goal directed therapy (GDT) was effective only in higher control mortality rates (> 20%) with a relatively high heterogeneity that limited the strength of evidence. The aim of the present meta-analysis was to clearly understand which high risk patients may benefit of GDT.EVIDENCE ACQUISITION: Systematic review of randomized controlled trials with meta-analyses, including a meta-regression technique. MEDLINE, EMBASE, and The Cochrane Library databases were searched (1980-January 2015). Trials enrolling adult surgical patients and comparing the effects of GDT versus standard hemodynamic therapy were considered. The primary outcome measure was mortality. Data synthesis was obtained by using Odds Ratio (OR) with 95% confidence interval (CI) by random-effects model.EVIDENCE SYNTHESIS: Fifty eight studies met the inclusion criteria (8171 participants). Pooled OR for mortality was 0.70 (95% CI 0.56-0.88, P= 0.002, no statistical heterogeneity). GDT significantly reduced mortality when it is > 10% in control group (OR 0.43, 95% CI 0.30-0.61, P< 0.00001). The meta-regression model showed that the cut off of 10% of mortality rate in control group significantly differentiates 43 studies from the other 15, with a regression coefficient b of -0.033 and a P value of 0.0001. The significant effect of GDT was driven by high risk of bias studies (OR 0.48, 95% CI 0.34-0.67, P< 0.0001).CONCLUSIONS: The present meta-analysis, adopting the meta-regression technique, suggests that GDT significantly reduces mortality even when the event control rate is > 10%
Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran
In this study the essential oils obtained from four different plant species belonging to the Lamiaceae family were extracted by means of hydrodistillation and their composition and antimicrobial activity were evaluated. About 66 components were identified by using gas chromatography-mass spectrometry (GC-MS), and among all, thymol (67.7%), oleic acid (0.5-62.1%), (-)-caryophyllene oxide (0.4-24.8%), α-pinene (1.1-19.4%), 1,8-cineole (0.2-15.4%), palmitic acid (0.32-13.28%), (â+)spathulenol (11.16%), and germacrene D (0.3-10.3%) were the most abundant in all the species tested (i.e. Thymus daenensis, Nepeta sessilifolia, Hymenocrater incanus, and Stachys inflata). In particular, only the composition of essential oils from H. incanus was completely detected (99.13%), while that of the others was only partially detected. Oxygenated monoterpenes (75.57%) were the main compounds of essential oil from T. daenensis; sesquiterpenes hydrocarbons (26.88%) were the most abundant in S. inflata; oxygenated sesquiterpenes (41.22%) were mainly detected in H. incanus essential oil, while the essential oil from N. sessilifolia was mainly composed of non-terpene and fatty acids (77.18%). Due to their slightly different composition, also the antibacterial activity was affected by the essential oil tested. Indeed, the highest antibacterial and antifungal activities were obtained with the essential oil from T. daenensis by means of the inhibition halo (39â±â1 and 25â±â0 mm) against Gram-positive strains such as Staphylococcus aureus and Aspergillus brasiliensis. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) of the essential oils obtained from the four species varied from 16 to 2000 ÎŒg/mL and were strictly affected by the type of microorganism tested. As an example, the essential oils from H. incanus and S. inflata were the most effective against the Gram-negative bacterium Pseudomonas aeruginosa (MIC 16 and 63 ÎŒg/ml, respectively), which is considered one of the most resistant bacterial strain. Therefore, the essential oils obtained from the four species contained a suitable phytocomplexes with potential applications in different commercial area such as agriculture, food, pharmaceutical and cosmetic industries. Moreover, these essential oils can be considered a valuable natural alternative to some synthetic antibiotics, thanks to their ability to control the growth of different bacteria and fungi
Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields
Stretching experiments on single molecules of arbitrary length opened the way for studying the statistical mechanics of small systems. In many cases in which the thermodynamic limit is not satisfied, different macroscopic boundary conditions, corresponding to different statistical mechanics ensembles, yield different force-displacement curves. We formulate analytical expressions and develop Monte Carlo simulations to quantitatively evaluate the difference between the Helmholtz and the Gibbs ensembles for a wide range of polymer models of biological relevance. We consider generalizations of the freely jointed chain and of the worm-like chain models with extensible bonds. In all cases we show that the convergence to the thermodynamic limit upon increasing contour length is described by a suitable power law and a specific scaling exponent, characteristic of each model. (C) 2012 American Institute of Physics
- âŠ