24 research outputs found

    Storing self-contained gel capillary cassettes for POC medical diagnostics

    Get PDF
    For effective clinical uptake of the lab on a chip/point of care technology (LOC-POC), in addition to cost advantages LOC-POC devices should offer multiple patient screening panels for related diseases as well as cold-chain transportation and storage abilities. We recently described a device that performs polymerase chain reaction (PCR) to simultaneously screen raw clinical samples from up to 16 patients for multiple infectious agents (Manage et al., Lab Chip, 2013, 13, 2576–2584). This cassette contains glass capillaries with desiccated semi-solid acrylamide gels that include all the reagents except for the sample, with integrated quality control. Here we report the development of protocols to store assembled PCR cassettes at room temperature, 4 uC or 220 uC as well as at +40 uC. We show that our cassettes are stable, with no loss of activity for at least 3 months at RT and at least 7 months at 4 uC and 220 uC. However, the activity of desiccated cassettes degrades when stored for more than 2 weeks at 40 uC, insufficient time for postmanufacture delivery and use of cassette PCR. To address this, we have evaluated two stage storage protocols. PCR cassettes can initially be stored at 4 uC and 220 uC for prolonged periods of time and removed for shorter term storage at RT, retaining activity for at least a month, which would facilitate transport to remote areas for testing. Effective use of cassette PCR in high temperature regions of the world, for experimental purposes defined here as 40 uC, appears to be feasible only after a first stage storage in the cold, followed by no more than 1 week at 40 uC. This should allow sufficient time for delivery by the manufacturer to a central area well served by power and refrigeration, for later ambient temperature transport and use in under-resourced areas that lack refrigeration

    An enclosed in-gel PCR amplification cassette with multi-target, multi-sample detection for platform molecular diagnostics

    Get PDF
    This work describes a self-contained, simple, disposable, and inexpensive gel capillary cassette for DNA amplification in near point of care settings. The cassette avoids the need for pumps or valves during raw sample delivery or polymerase chain reaction (PCR) amplification steps. The cassette contains capillary reaction units that can be stored at room temperature for up to 3 months. The current cassette configuration format can simultaneously tests up to 16 patients for two or more targets, accommodates different sample types on the same cassette, has integrated positive and negative controls and allows flexibility for multiple geometries. PCR reagents in the cassette are desiccated to allow storage at room temperature with rehydration by raw sample at the time of testing. The sample is introduced to the cassette via a transfer pipette simply by capillary force. DNA amplification was carried out in a portable prototype instrument for PCR thermal cycling with fluorescence detection of amplified products by melt curve analysis. To demonstrate performance, raw genital swabs and urine were introduced to the same cassette to simultaneously detect four sexually transmitted infections. Herpes Simplex Viruses (HSV-1 and HSV-2) were detected from raw genital swabs. Ureaplasma Urealyticum (UU) and Mycoplasma Homonis (MH) were detected from raw urine. Results for multiple patients were obtained in as little as 50'. This platform allows multiparameter clinical testing with a pre-assembled cassette that requires only the introduction of raw sample. Modification of the prototype device to accommodate larger cassettes will ultimately provide high throughput simultaneous testing of even larger numbers of samples for many different targets, as is required for most clinical applications. Combinations of wax and/or polymer cassettes holding capillary reaction units are feasible. The components of the cassette are suited to mass production and robotic assembly to produce a readily manufactured disposable reaction cassette that can be configured for disease-specific testing panels. Rapid testing with a disposable reaction cassette on an inexpensive instrument will permit on the spot evaluation of patients in the clinic for faster medical decision-making and more informed therapeutic choices

    Structural and optical characterization of hydrogenated amorphous carbon thin films

    No full text
    grantor: University of TorontoA series of hydrogenated amorphous carbon (a-C:H) semiconducting thin films was deposited using the dc saddle field glow discharge deposition technique. The ion energy during the deposition was varied to achieve films ranging from soft to hard a-C:H. In order to study the structure and the properties of a-C:H films, ultraviolet, visible, infrared, photoluminescence, and X-ray Auger electron spectroscopies, scanning electron microscopy, and mass density measurements, were used as diagnostic techniques to extract information on growth rate, mass density, sp2/sp3 ratio, hydrogen concentration, Tauc gap, photoluminescence, concentration of non-radiative recombination centers, and the degree of cross-linking of the carbon network. Based on these results, the films studied in the present research are found to consist of sp2carbon clusters of which the size increases with increasing mean ion energy during the deposition, resulting in a lower Tauc gap; this is explained in terms of the Robertson model. The growth rate of the films increases due to an increase in the concentration of unsaturated bond sites which act as chemisorption centers for radicals on the growing film surface. The increased hydrogen evolution from the film at higher ion energies results in increases in the sp2 fraction, the degree of cross-linking of the C-C network, and the mass density of a-C:H films. Atmospheric aging of soft a-C:H films reveals a decrease in the concentration of C-H bonds in a-C:H. The proposed reaction paths for the hydrolysis and oxidation of C:H films indicate that the films mainly react with water. Thermal annealing of a-C:H films in vacuum greatly influences the soft a-C:H films, in which the chemical bonds in the hydrocarbon network are restructured due to the evolution of hydrogen, which results in a graphitic structure.Ph.D

    Application of lab-on-a-chip multiplex cassette PCR for the detection of enterohemorrhagic Escherichia coli

    No full text
    Abstract Background Fast molecular detection methods benefit from ready-to-run lab-on-a-chip molecular assays with minimum preparation time. Detection efficiency of such methods can improve if multiple targets are detected simultaneously per given reaction. Detection of food pathogens, i.e. Escherichia coli (E. coli), is generally performed in two stages with the detection of multiple targets in each stage.With simultaneous testing, screening for pathogens is fast and efficient. Results In this study, we show the application of multiplex PCR performed on a ready-made cassette to detect 10 targets each for eight samples known to harbor E. coli. In cassette PCR, the aluminum cassette (38.6 mm × 31.4 mm) contains 10 trenches having a total of 50 capillaries with microliter volumes of desiccated acrylamide gels holding all reagents required for the PCR including internal positive and negative controls. The gel contains LCGreen dye to detect double stranded DNA. Fluorescence monitoring allows the detection of the amplified products by melt curve analysis. In this application, each of the five capillaries in a given trench contains two of the primer sets for the detection of 10 targets in pathogenic E. coli, namely, O157, Eae, Stx1, Stx2 and six O-antigen genes. Primer specificity was confirmed. Each trench tests one sample. Eight minimally processed enriched beef carcass swab samples were analyzed for parallel detection of 10 targets within 1 h and 15 min. Samples were delivered to the capillaries by capillary forces thereby hydrating the gels. Multiplex cassette PCR results were confirmed with conventional multiplex PCRs performed in a commercial real-time PCR system. Conclusions Cassette PCR technology is ideally suited to multi-target detection of pathogens in food products. The cassette performs multiple PCR reactions in parallel, with multiplex detection of targets within each reaction unit. Cassette PCR/ melt curve analysis results for the simultaneous detection of 10 targets of pathogenic E.coli in beef carcass swab samples were confirmed with a conventional real-time PCR/ melt curve analysis as well as with agarose gel electrophoresis. Although designed for the detection of E. coli, this multiplex cassette PCR technique can be applied to any other assay where the fast detection of multiple targets is required

    High-Throughput Genotyping of Single Nucleotide Polymorphisms in the Plasmodium falciparum dhfr Gene by Asymmetric PCR and Melt-Curve Analysisâ–¿

    No full text
    Mutations within the Plasmodium falciparum dihydrofolate reductase gene (Pfdhfr) contribute to resistance to antimalarials such as sulfadoxine-pyrimethamine (SP). Of particular importance are the single nucleotide polymorphisms (SNPs) within codons 51, 59, 108, and 164 in the Pfdhfr gene that are associated with SP treatment failure. Given that traditional genotyping methods are time-consuming and laborious, we developed an assay that provides the rapid, high-throughput analysis of parasite DNA isolated from clinical samples. This assay is based on asymmetric real-time PCR and melt-curve analysis (MCA) performed on the LightCycler platform. Unlabeled probes specific to each SNP are included in the reaction mixture and hybridize differentially to the mutant and wild-type sequences within the amplicon, generating distinct melting curves. Since the probe is present throughout PCR and MCA, the assay proceeds seamlessly with no further addition of reagents. This assay was validated for analytical sensitivity and specificity using plasmids, purified genomic DNA from reference strains, and parasite cultures. For all four SNPs, correct genotypes were identified with 100 copies of the template. The performance of the assay was evaluated with a blind panel of clinical isolates from travelers with low-level parasitemia. The concordance between our assay and DNA sequencing ranged from 84 to 100% depending on the SNP. We also directly compared our MCA assay to a published TaqMan real-time PCR assay and identified major issues with the specificity of the TaqMan probes. Our assay provides a number of technical improvements that facilitate the high-throughput screening of patient samples to identify SP-resistant malaria

    Comparison of a Miniaturized Cassette PCR System with a Commercially Available Platform for Detecting Escherichia coli in Beef Carcass Swabs

    No full text
    Detection sensitivity of cassette PCR was compared with a commercial BAX® PCR system for detection of eae and stx genes in Escherichia coli from 806 beef carcass swabs. Cassette PCR detects multiple genetic markers on multiple samples using PCR and melt curve analysis. Conventional PCR served as a gold standard. Overall, for positive and negative concordance, cassette PCR was 98.6% concordant with conventional PCR, and BAX PCR was 65.4% concordant. Of 806 beef carcass swabs, 339 by cassette PCR and 84 by BAX PCR harbored eae + stx+E. coli. For BAX PCR reactions, 84% of eae+ swabs, 79% of stx+ swabs, and 86% of eae + stx+ swabs were also detected by cassette PCR. For cassette PCR reactions, 457 swabs were eae+ with only 117 scored as eae+ using BAX PCR for 26% positive concordance. For stx primers, cassette PCR scored 480 samples as stx+ but only 215 samples were stx+ by BAX PCR, giving 45% positive concordance. Importantly, cassette PCR scored 339 swabs as harboring eae + stx+ E. coli, but BAX PCR detected only 71 positives giving only 21% positive concordance, with many false negatives. Cassette PCR is a highly sensitive method for detection of STEC genes in E. coli found in carcass swabs

    Cross-sectional view of the PCR cassette with capillaries and wax.

    No full text
    <p>(a) capillaries where the gel is desiccated before the sample is added. (b) capillaries after the sample has been added and the gel has hydrated, but before the wax is melted. (c) capillaries after the wax has melted after the cassette was heated during the PCR.</p
    corecore