186 research outputs found

    Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    Get PDF
    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand (α-galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc.) are also discussed

    Role of Kupffer Cells in Systemic Anti-Microbial Defense

    Get PDF
    The liver has long been recognized as important in digestion. However, the liver’s abundance of innate immune cells strongly suggests that it has specific defense mechanisms. A characteristic anatomical feature of the liver is its large blood flow. The blood flowing out from the whole alimentary tract is transported to the liver via the portal vein and distributed to peripheral structures called sinusoids. Kupffer cells, a typical example of resident macrophages, are located in sinusoids and are in continuous contact with various portal blood components. They have vigorous phagocytic activity and eliminate bacteria coming from the gut before they enter systemic circulation. Based on this framework, Kupffer cells were considered a filter for portal blood pathogens. However, recent evidence reveals that they exert crucial functions in systemic host defense against bacterial infection. To defend against various sources of bacterial pathogens, Kupffer cells construct an efficient surveillance system for systemic circulation, cooperating aggressively with other immune cells. They collaborate with non-immune cells such as hepatocytes and platelets to potentiate defense function. In conclusion, Kupffer cells coordinate immune cell activity to efficiently defend against infections, making them crucial players in systemic antibacterial immunity

    Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean.</p> <p>Results</p> <p>Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes.</p> <p>Conclusions</p> <p>The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean.</p

    Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs).</p> <p>Results</p> <p>The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features.</p> <p>Conclusion</p> <p>The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome.</p

    Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs).</p> <p>Results</p> <p>The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features.</p> <p>Conclusion</p> <p>The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome.</p

    Positron emission tomography assessments of phosphodiesterase 10A in patients with schizophrenia

    Get PDF
    [Background and hypothesis] Phosphodiesterase 10A (PDE10A) is a highly expressed enzyme in the basal ganglia, where cortical glutamatergic and midbrain dopaminergic inputs are integrated. Therapeutic PDE10A inhibition effects on schizophrenia have been reported previously, but the status of this molecule in the living patients with schizophrenia remains elusive. Therefore, this study aimed to investigate the central PDE10A status in patients with schizophrenia and examine its relationship with psychopathology, cognition, and corticostriatal glutamate levels. [Study design] This study included 27 patients with schizophrenia, with 5 antipsychotic-free cases, and 27 healthy controls. Positron emission tomography with [18F]MNI-659, a specific PDE10A radioligand, was employed to quantify PDE10A availability by measuring non-displaceable binding potential (BPND) of the ligand in the limbic, executive, and sensorimotor striatal functional subregions, and in the pallidum. BPND estimates were compared between patients and controls while controlling for age and gender. BPND correlations were examined with behavioral and clinical measures, along with regional glutamate levels quantified by the magnetic resonance spectroscopy. [Study results] Multivariate analysis of covariance demonstrated a significant main effect of diagnosis on BPND (p = .03). A posthoc test showed a trend-level higher sensorimotor striatal BPND in patients, although it did not survive multiple comparison corrections. BPND in controls in this subregion was significantly and negatively correlated with the Tower of London scores, a cognitive subtest. Striatal or dorsolateral prefrontal glutamate levels did not correlate significantly with BPND in either group. [Conclusions] The results suggest altered striatal PDE10A availability and associated local neural dysfunctions in patients with schizophrenia

    Optimized protocol for the extraction of RNA and DNA from frozen whole blood sample stored in a single EDTA tube

    Get PDF
    Cryopreservation of whole blood is useful for DNA collection, and clinical and basic research. Blood samples in ethylenediaminetetraacetic acid disodium salt (EDTA) tubes stored at − 80 °C are suitable for DNA extraction, but not for high-quality RNA extraction. Herein, a new methodology for high-quality RNA extraction from human blood samples is described. Quickly thawing frozen whole blood on aluminum blocks at room temperature could minimize RNA degradation, and improve RNA yield and quality compared with thawing the samples in a 37 °C water bath. Furthermore, the use of the NucleoSpin RNA kit increased RNA yield by fivefold compared with the PAXgene Blood RNA Kit. Thawing blood samples on aluminum blocks significantly increased the DNA yield by ~ 20% compared with thawing in a 37 °C water bath or on ice. Moreover, by thawing on aluminum blocks and using the NucleoSpin RNA and QIAamp DNA Blood kits, the extraction of RNA and DNA of sufficient quality and quantity was achieved from frozen EDTA whole blood samples that were stored for up to 8.5 years. Thus, extracting RNA from frozen whole blood in EDTA tubes after long-term storage is feasible. These findings may help advance gene expression analysis, as well as biomarker research for various diseases

    ARTADE2DB: Improved Statistical Inferences for Arabidopsis Gene Functions and Structure Predictions by Dynamic Structure-Based Dynamic Expression (DSDE) Analyses

    Get PDF
    Recent advances in technologies for observing high-resolution genomic activities, such as whole-genome tiling arrays and high-throughput sequencers, provide detailed information for understanding genome functions. However, the functions of 50% of known Arabidopsis thaliana genes remain unknown or are annotated only on the basis of static analyses such as protein motifs or similarities. In this paper, we describe dynamic structure-based dynamic expression (DSDE) analysis, which sequentially predicts both structural and functional features of transcripts. We show that DSDE analysis inferred gene functions 12% more precisely than static structure-based dynamic expression (SSDE) analysis or conventional co-expression analysis based on previously determined gene structures of A. thaliana. This result suggests that more precise structural information than the fixed conventional annotated structures is crucial for co-expression analysis in systems biology of transcriptional regulation and dynamics. Our DSDE method, ARabidopsis Tiling-Array-based Detection of Exons version 2 and over-representation analysis (ARTADE2-ORA), precisely predicts each gene structure by combining two statistical analyses: a probe-wise co-expression analysis of multiple transcriptome measurements and a Markov model analysis of genome sequences. ARTADE2-ORA successfully identified the true functions of about 90% of functionally annotated genes, inferred the functions of 98% of functionally unknown genes and predicted 1,489 new gene structures and functions. We developed a database ARTADE2DB that integrates not only the information predicted by ARTADE2-ORA but also annotations and other functional information, such as phenotypes and literature citations, and is expected to contribute to the study of the functional genomics of A. thaliana. URL: http://artade.org

    An integrated analysis platform merging SuperDARN data within the THEMIS tool developed by ERG-Science Center (ERG-SC)

    Get PDF
    The Energization and Radiation in Geospace (ERG) mission seeks to explore the dynamics of the radiation belts in the Earth’s inner magnetosphere with a space-borne probe (ERG satellite) in coordination with related ground observations and simulations/ modeling studies. For this mission, the Science Center of the ERG project (ERG-SC) will provide a useful data analysis platform based on the THEMIS Data Analysis software Suite (TDAS), which has been widely used by researchers in many conjunction studies of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and ground data. To import SuperDARN data to this highly useful platform, ERG-SC, in close collaboration with SuperDARN groups, developed the Common Data Format (CDF) design suitable for fitacf data and has prepared an open database of SuperDARN data archived in CDF. ERG-SC has also been developing programs written in Interactive Data Language (IDL) to load fitacf CDF files and to generate various kinds of plots−not only range-time-intensity-type plots but also two-dimensional map plots that can be superposed with other data, such as all-sky images of THEMIS-GBO and orbital footprints of various satellites. The CDF-TDAS scheme developed by ERG-SC will make it easier for researchers who are not familiar with SuperDARN data to access and analyze SuperDARN data and thereby facilitate collaborative studies with satellite data, such as the inner magnetosphere data provided by the ERG (Japan)−RBSP (USA)−THEMIS (USA) fleet

    Interferon signaling and hypercytokinemia-related gene expression in the blood of antidepressant non-responders

    Get PDF
    Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, biomarkers for prediction of antidepressant responses are needed, as predicting which patients will not respond to antidepressants can optimize selection of alternative therapies. We aimed to identify biomarkers that could predict antidepressant responsiveness using a novel data-driven approach based on statistical pattern recognition. We retrospectively divided patients with major depressive disorder into antidepressant responder and non-responder groups. Comprehensive gene expression analysis was performed using peripheral blood without narrowing the genes. We designed a classifier according to our own discrete Bayes decision rule that can handle categorical data. Nineteen genes showed differential expression in the antidepressant non-responder group (n = 15) compared to the antidepressant responder group (n = 15). In the training sample of 30 individuals, eight candidate genes had significantly altered expression according to quantitative real-time polymerase chain reaction. The expression of these genes was examined in an independent test sample of antidepressant responders (n = 22) and non-responders (n = 12). Using the discrete Bayes classifier with the HERC5, IFI6, and IFI44 genes identified in the training set yielded 85% discrimination accuracy for antidepressant responsiveness in the 34 test samples. Pathway analysis of the RNA sequencing data for antidepressant responsiveness identified that hypercytokinemia- and interferon-related genes were increased in non-responders. Disease and biofunction analysis identified changes in genes related to inflammatory and infectious diseases, including coronavirus disease. These results strongly suggest an association between antidepressant responsiveness and inflammation, which may be useful for future treatment strategies for depression
    corecore