58 research outputs found

    Experimental and numerical study of micro deep drawing

    Get PDF
    © 2015 Owned by the authors, published by EDP Sciences. Micro forming is a key technology for an industrial miniaturisation trend, and micro deep drawing (MDD) is a typical micro forming method. It has great advantages comparing to other micro manufacturing methods, such as net forming ability, mass production potential, high product quality and complex 3D metal products fabrication capacity. Meanwhile, it is facing difficulties, for example the so-called size effects, once scaled down to micro scale. To investigate and to solve the problems in MDD, a combined micro blanking-drawing machine is employed and an explicit-implicit micro deep drawing model with a voronoi blank model is developed. Through heat treatment different grain sizes can be obtained, which affect material's properties and, consequently, the drawing process parameters, as well as produced cups' quality. Further, a voronoi model can provide detailed material information in simulation, and numerical simulation results are in accordance with experimental results

    Formability of micro sheet hydroforming of ultra-fine grained stainless steel

    Get PDF
    © 2014 The Authors. Published by Elsevier Ltd. The formability of ultra-fine grained stainless steel is investigated in micro hydromechanical deep drawing. The materials used are ultra-fine grained stainless steel and SUS304-H with thickness of 20 and 50 m. The micro cups are successfully fabricated for the ultra-fine grained stainless steel but it cannot be fabricated for SUS304-H with thickness of 20 m. The fracture type of ultra-fine grained stainless steel foil is the shortage of tensile strength at plain strain state and does not change with a decrease of the thickness. In contrast, the fracture type of SUS304-H foil changes to the bending deformation with decreasing the thickness due to its low ductility. The ultra-fine grained metal foil is required to obtain the high formability and fabricate the sharp micro cups

    Factors that contribute to long-term survival in patients with leukemia not in remission at allogeneic hematopoietic cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been insufficient examination of the factors affecting long-term survival of more than 5 years in patients with leukemia that is not in remission at transplantation.</p> <p>Method</p> <p>We retrospectively analyzed leukemia not in remission at allogeneic hematopoietic cell transplantation (allo-HCT) performed at our institution between January 1999 and July 2009. Forty-two patients with a median age of 39 years received intensified conditioning (n = 9), standard (n = 12) or reduced-intensity conditioning (n = 21) for allo-HCT. Fourteen patients received individual chemotherapy for cytoreduction during the three weeks prior to reduced-intensity conditioning. Diagnoses comprised acute leukemia (n = 29), chronic myeloid leukemia-accelerated phase (n = 2), myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) (n = 10) and plasma cell leukemia (n = 1). In those with acute leukemia, cytogenetic abnormalities were intermediate (44%) or poor (56%). The median number of blast cells in bone marrow (BM) was 26.0% (range; 0.2-100) before the start of chemotherapy for allo-HCT. Six patients had leukemic involvement of the central nervous system. Stem cell sources were related BM (7%), related peripheral blood (31%), unrelated BM (48%) and unrelated cord blood (CB) (14%).</p> <p>Results</p> <p>Engraftment was achieved in 33 (79%) of 42 patients. Median time to engraftment was 17 days (range: 9-32). At five years, the cumulative probabilities of acute graft-versus-host disease (GVHD) and chronic GVHD were 63% and 37%, respectively. With a median follow-up of 85 months for surviving patients, the five-year Kaplan-Meier estimates of leukemia-free survival rate and overall survival (OS) were 17% and 19%, respectively. At five years, the cumulative probability of non-relapse mortality was 38%. In the univariable analyses of the influence of pre-transplant variables on OS, poor-risk cytogenetics, number of BM blasts (>26%), MDS overt AML and CB as stem cell source were significantly associated with worse prognosis (p = .03, p = .01, p = .02 and p < .001, respectively). In addition, based on a landmark analysis at 6 months post-transplant, the five-year Kaplan-Meier estimates of OS in patients with and without prior history of chronic GVHD were 64% and 17% (p = .022), respectively.</p> <p>Conclusion</p> <p>Graft-versus-leukemia effects possibly mediated by chronic GVHD may have played a crucial role in long-term survival in, or cure of active leukemia.</p

    How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban ‘Adapter’

    Get PDF
    Background: Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the ‘Lombard effect’). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. Methods: We investigated amplitude regulation of alarm calls using, as our model, a successful urban ‘adapter ’ species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Results: Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in ‘noise’, namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. Conclusions: The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals

    Quantitative RT-PCR profiling of the Rabbit Immune Response: Assessment of Acute Shigella flexneri Infection

    Get PDF
    Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions

    Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice

    Get PDF
    Introduction High-fat diets (HFDs) are known to cause obesity and are associated with breast cancer progression and metastasis. Because obesity is associated with breast cancer progression, it is important to determine whether dietary fat per se stimulates breast cancer progression in the absence of obesity. This study investigated whether an HFD increases breast cancer growth and metastasis, as well as mortality, in obesity-resistant BALB/c mice. Methods The 4-week-old, female BALB/c mice were fed HFD (60% kcal fat) or control diet (CD, 10% kcal fat) for 16 weeks. Subsequently, 4T1 mammary carcinoma cells were injected into the inguinal mammary fat pads of mice fed continuously on their respective diets. Cell-cycle progression, angiogenesis, and immune cells in tumor tissues, proteases and adhesion molecules in the lungs, and serum cytokine levels were analyzed with immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay (ELISA). In vitro studies were also conducted to evaluate the effects of cytokines on 4T1 cell viability, migration, and adhesion. Results Spleen and gonadal fat-pad weights, tumor weight, the number and volume of tumor nodules in the lung and liver, and tumor-associated mortality were increased in the HFD group, with only slight increases in energy intake and body weight. HF feeding increased macrophage infiltration into adipose tissues, the number of lipid vacuoles and the expression of cyclin-dependent kinase (CDK)2, cyclin D1, cyclin A, Ki67, CD31, CD45, and CD68 in the tumor tissues, and elevated serum levels of complement fragment 5a (C5a), interleukin (IL)-16, macrophage colony-stimulating factor (M-CSF), soluble intercellular adhesion molecule (sICAM)-1, tissue inhibitors of metalloproteinase (TIMP)-1, leptin, and triggering receptor expressed on myeloid cells (TREM)-1. Protein levels of the urokinase-type plasminogen activator, ICAM-1, and vascular cell adhesion molecule-1 were increased, but plasminogen activator inhibitor-1 levels were decreased in the lungs of the HFD group. In vitro assays using 4T1 cells showed that sICAM-1 increased viability; TREM-1, TIMP-1, M-CSF, and sICAM-1 increased migration; and C5a, sICAM-1, IL-16, M-CSF, TIMP-1, and TREM-1 increased adhesion. Conclusions Dietary fat increases mammary tumor growth and metastasis, thereby increasing mortality in obesity-resistant mice

    Surface morphology of micro stepped components in micro cross wedge rolling

    Get PDF
    © 2014 The Authors. Published by Elsevier Ltd. A novel microforming process - Micro Cross Wedge Rolling has been proposed, which is very promising in producing micro stepped components. It is inevitable to confront with huge challenges in the development of micro cross wedge rolling technology. The influences of miniaturization, especially size effect, on process, accuracy control and product quality have to be studied. A micro cross wedge rolling testing rig has been designed and manufactured. Micro stepped components have been fabricated successfully by adopting flat wedge tools on this rig. The effects of surface roughness of tool, grain size in workpiece and cross sectional area reduction on surface morphology of rolled workpiece have been investigated

    Potential of fluid pressure use for achieving high formability in micro sheet forming process

    Get PDF
    © 2014 AIP Publishing LLC. This study decsribesa potential offluid pressure in micro hydromechanical deep drawingto achieve high formability. The FE simulation is carried out using the stainless steel foil with 50μm thickness. The friction holding effect can be obtained by applying the fluid pressure and it becomes high at high Dp/t in MHDD. By applying the counter and radial pressure in MHDD, the desired lubrication condition can be obtained and the friction force can be reduced. By the friction holding effect and lubrication effect in MHDD, the micro cups can be successful fabricated in MHDD. Consequently, it is clarify that the fluid pressure has a potential to achieve the high formability because it makes the friction holding, radial pressure and lubrication effects in MHDD

    Micro sheet hydroforming process of ultra-thin pure titanium foil

    Get PDF
    A micro hydromechanical deep drawing is carried out using the pure titanium and the effect of fluid pressure on formability of pure titanium is investigated. The experiments are performed using the two kinds of pure titanium foils (TR270C-H and TR270C-O) and stainless steel foil (SUS304-H) with 50 thickness and the cylindrical and conical punches. As a result, it is found that the peeling off the oxide film of pure titanium can be reduced by applying the fluid pressure because the friction force and contact pressure between the blank and die decreases. However, the formability is lower for pure titanium than that for stainless steel because the tensile strength is low and the friction force is easy to increase as the friction force increases. In contrast, due to the low young modulus of pure titanium, the restriction of wrinkling, decrease of friction force and friction holding effect can be obtained at low fluid pressure. © (2015) Trans Tech Publications, Switzerland
    corecore