9,155 research outputs found

    Halving the Casimir force with conductive oxides

    Get PDF
    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals.Comment: modified version, accepted for publication in Phys Rev Let

    Nonequilibrium phase transition on a randomly diluted lattice

    Get PDF
    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.Comment: 4 pages, 1 eps figure, final version as publishe

    Unsupervised home spirometry versus supervised clinic spirometry for respiratory disease: a systematic methodology review and meta-analysis

    Get PDF
    BACKGROUND: The number of patients completing unsupervised home spirometry has recently increased due to more widely available portable technology and the COVID-19 pandemic, despite a lack of solid evidence to support it. This systematic methodology review and meta-analysis explores quantitative differences in unsupervised spirometry compared with spirometry completed under professional supervision. METHODS: We searched four databases to find studies that directly compared unsupervised home spirometry with supervised clinic spirometry using a quantitative comparison (e.g. Bland-Altman). There were no restrictions on clinical condition. The primary outcome was measurement differences in common lung function parameters (forced expiratory volume in 1ā€…s (FEV1), forced vital capacity (FVC)), which were pooled to calculate overall mean differences with associated limits of agreement (LoA) and confidence intervals (CI). We used the I2 statistic to assess heterogeneity, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess risk of bias and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess evidence certainty for the meta-analyses. The review has been registered with PROSPERO (CRD42021272816). RESULTS: 3607 records were identified and screened, with 155 full texts assessed for eligibility. We included 28 studies that quantitatively compared spirometry measurements, 17 of which reported a Bland-Altman analysis for FEV1 and FVC. Overall, unsupervised spirometry produced lower values than supervised spirometry for both FEV1 with wide variability (mean difference -107ā€…mL; LoA=ā€…-509, 296; I2=95.8%; p<0.001; very low certainty) and FVC (mean difference -184ā€…mL, LoA=ā€…-1028, 660; I2=96%; p<0.001; very low certainty). CONCLUSIONS: Analysis under the conditions of the included studies indicated that unsupervised spirometry is not interchangeable with supervised spirometry for individual patients owing to variability and underestimation

    Flat Information Geometries in Black Hole Thermodynamics

    Full text link
    The Hessian of either the entropy or the energy function can be regarded as a metric on a Gibbs surface. For two parameter families of asymptotically flat black holes in arbitrary dimension one or the other of these metrics are flat, and the state space is a flat wedge. The mathematical reason for this is traced back to the scale invariance of the Einstein-Maxwell equations. The picture of state space that we obtain makes some properties such as the occurence of divergent specific heats transparent.Comment: 14 pages, one figure. Dedicated to Rafael Sorkin's birthda

    Pathognomonic and epistatic genetic alterations in B-cell non-Hodgkin lymphoma [preprint]

    Get PDF
    B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL such as diffuse large B-cell lymphoma (DLBCL) have been comprehensively interrogated at the genomic level, but other less common subtypes such as mantle cell lymphoma (MCL) remain sparsely characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 755 B-NHL tumors at high depth; primarily including DLBCL, MCL, follicular lymphoma (FL), and Burkitt lymphoma (BL). We identified conserved hallmarks of B-NHL that were deregulated across major subtypes, such as the frequent genetic deregulation of the ubiquitin proteasome system (UPS). In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations that are pathognomonic. The cumulative burden of mutations within a single cluster were more significantly discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic epistasis that contribute to disease etiology. We therefore provide a framework of co-occurring mutations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis of B-NHL subtypes

    Efficacy of REACH Forgiveness across Cultures

    Get PDF
    Across cultures, most people agree that forgiveness is a virtue. However, culture may influence how willing one should be to forgive and how one might express forgiveness. At a university in the United States, we recruited both foreign-extraction students and domestic students (N = 102) to participate in a six-hour REACH Forgiveness intervention. We investigated the efficacy of the intervention overall as well as whether foreign-extraction and domestic students responded differently to treatment. Forgiveness was assessed using two measuresā€”decisional forgiveness and emotional forgiveness. The six-hour REACH Forgiveness intervention improved participantsā€™ ratings of emotional forgiveness, but not decisional forgiveness, regardless of their culture. Thus, the REACH Forgiveness intervention appears equally efficacious for participants from different cultural backgrounds when conducted in the United States with college students

    SUMOylation inhibits FOXM1 activity and delays mitotic transition

    Get PDF
    The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response

    Causality-Violating Higgs Singlets at the LHC

    Full text link
    We construct a simple class of compactified five-dimensional metrics which admits closed timelike curves (CTCs), and derive the resulting CTCs as analytic solutions to the geodesic equations of motion. The associated Einstein tensor satisfies all the null, weak, strong and dominant energy conditions. In particular, no negative-energy "tachyonic" matter is required. In extra-dimensional models where gauge charges are bound to our brane, it is the Kaluza-Klein (KK) modes of gauge-singlets that may travel through the CTCs. From our brane point of view, many of these KK modes would appear to travel backward in time. We give a simple model in which time-traveling Higgs singlets can be produced by the LHC, either from decay of the Standard Model (SM) Higgs or through mixing with the SM Higgs. The signature of these time-traveling singlets is a secondary decay vertex pre-appearing before the primary vertex which produced them. The two vertices are correlated by momentum conservation. We demonstrate that pre-appearing vertices in the Higgs singlet-doublet mixing model may well be observable at the LHC.Comment: 55 pages, 5 figures, v4: Version updated to include in single manuscript the contents of Erratum [Phys. Rev. D 88, 069901(E) (2013)], Reply [Phys. Rev. D 88, 068702 (2013)], Comment [Phys. Rev. D 88, 068701 (2013), arXiv:1302.1711], and original published article [Phys. Rev. D 87, 045004 (2013), arXiv:1103.1373]. Positive conclusions remain unchange

    Planetary accretion and core formation inferred from Ni isotopes in enstatite meteorites

    Get PDF
    Nickel is a siderophile and near-refractory element, making its isotopes a potential tool for tracing planetary accretion and differentiation. However, the origin of the Ni stable isotope difference between bulk silicate Earth (BSE) and chondrites remains enigmatic. To address this problem, we report high precision Ni stable isotope data of enstatite chondrites and achondrites that possess similar mass independent O and Ni isotope compositions like the Earth-Moon system. Bulk enstatite chondrites have Ī“60/58Ni values of 0.24ā€‰Ā±ā€‰0.08 ā€° (2 s.d., nā€‰=ā€‰13). Enstatite achondrites, including main-group aubrites, Shallowater and Itqiy, show relatively large Ī“60/58Ni variations, ranging from 0.03ā€‰Ā±ā€‰0.02 ā€° to 0.57ā€‰Ā±ā€‰0.04 ā€°. This could reflect fractionations between sulfide and metal phases, as is evidenced by correlation between their S/Ni ratios and Ī“60/58Ni values. In enstatite achondrites, Ni is mainly hosted in metal and to a lesser extent in sulfides, so Ī“60/58Ni values in enstatite achondrites may represent the Ni isotopic values of the cores of their parent bodies. The overlapping Ī“60/58Ni values between bulk enstatite achondrites and enstatite chondrites indicate limited Ni stable isotope fractionation during core formation processes on reduced, sulfur-rich parent bodies. The Ni stable isotope gap between chondrites and the BSE could be possibly explained by chondrule-rich accretion model
    • ā€¦
    corecore