1,447 research outputs found

    (Sr3La2O5)(Zn1-xMnx)2As2: A Bulk Form Diluted Magnetic Semiconductor isostructural to the "32522" Fe-based Superconductors

    Full text link
    A new diluted magnetic semiconductor system, (Sr3La2O5)(Zn1-xMnx)2As2, has been synthesized and characterized. 10% Mn substitution for Zn in bulk form (Sr3La2O5)Zn2As2 results in a ferromagnetic ordering below Curie temperature, TC ~ 40 K. (Sr3La2O5)(Zn1-xMnx)2As2 has a layered crystal structure identical to that of 32522-type Fe based superconductors, and represents the fifth DMS family that has a direct counterpart among the FeAs high temperature superconductor families.Comment: Accepted for publication in EP

    Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries

    Get PDF
    CuS is a metal sulfide anode material used in constructing lithium ion batteries (LIBs) with great promise. However, its practical application is limited by rapid capacity decline, poor cycling, and rate performance. In this work, the CuS nanowire-on-nanoplate network is synthesized through an improved dealloying method under two contrasting reaction temperatures. When used as an LIB anode, the as-obtained CuS network exhibits superior cycling performance (420 mAh·g −1 retained after 100 cycles at 0.2 C). When at 3 C, it still delivers a capacity of around 350 mAh·g −1 . The improved electrochemical performances of the CuS anode should be attributed to the well-designed nanowire-on-nanoplate network structure in which the introduction of nanowires improves Li storage sites, shortens Li-ion diffusion distance, enhances the conductivity of active materials, and offers multiscale spaces for buffering the volume variation. The fabrication route adopted in this paper has an important significance for developing the dealloying technique and designing more suitable anode structures for LIBs

    Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment

    Get PDF
    Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma

    Integration of Link and Semantic Relations for Information Recommendation

    Get PDF
    Information services on the Internet are being used as an important tool to facilitate discovery of the information that is of user interests. Many approaches have been proposed to discover the information on the Internet, while the search engines are the most common ones. However, most of the current approaches of information discovery can discover the keyword-matching information only but cannot recommend the most recent and relative information to users automatically. Sometimes users can give only a fuzzy keyword instead of an accurate one. Thus, some desired information would be ignored by the search engines. Moreover, the current search engines cannot discover the latent but logically relevant information or services for users. This paper measures the semantic-similarity and link-similarity between keywords. Based on that, it introduces the concept of similarity of web pages, and presents a method for information recommendation. The experimental evaluation and comparisons with the existing studies are finally performed

    A two-base encoded DNA sequence alignment problem in computational biology

    Get PDF
    The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics. The primary objective of the "sequence alignment" problem is to search for a new algorithm that facilitates the use of two-base encoded data for large-scale re-sequencing projects. This algorithm should be able to perform local sequence alignment as well as error detection and correction in a reliable and systematic manner, enabling the direct comparison of encoded DNA sequence reads to a candidate reference DNA sequence. We will first briefly review two well-known sequence alignment approaches and provide a rudimentary improvement for implementation on parallel systems. Then, we carefully examin a unique sequencing technique known as the SOLiDTM System that can be implemented, and follow by the results from the global and local sequence alignment. In this report, the team presents an explanation of the algorithms for color space sequence data from the high-throughput re-sequencing technology and a theoretical parallel approach to the dynamic programming method for global and local alignment. The combination of the di-base approach and dynamic programming provides a possible viewpoint for large-scale re-sequencing projects. We anticipate the use of distributed computing to be the next-generation engine for large-scale problems like such
    corecore