6,532 research outputs found

    Controlling spin in an electronic interferometer with spin-active interfaces

    Full text link
    We consider electronic current transport through a ballistic one-dimensional quantum wire connected to two ferromagnetic leads. We study the effects of the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon scattering at the boundaries of the wire. The SDIPS produces a spin splitting of the wire resonant energies which is tunable with the gate voltage and the angle between the ferromagnetic polarizations. This property could be used for manipulating spins. In particular, it leads to a giant magnetoresistance effect with a sign tunable with the gate voltage and the magnetic field applied to the wire.Comment: 5 pages, 3 figures. to be published in Europhysics Letter

    Polarization and decoherence in a two-component Bose-Einstein Condensate

    Full text link
    We theoretically investigate polarization properties of a two-component Bose-Einstein condensate (BEC) and influence of decoherence induced by environment on BEC polarization through introducing four BEC Stokes operators which are quantum analog of the classical Stokes parameters for a light field. BEC polarization states can be geometrically described by a Poincar\'{e} sphere defined by expectation values of BEC Stokes operators. Without decoherence, it is shown that nonlinear inter-atomic interactions in the BEC induce periodic polarization oscillations whose periods depend on the difference between self-interaction in each component and inter-component interaction strengths. In particular, when inter-atomic nonlinear self-interaction in each BEC component equals inter-component nonlinear interaction, Stokes vector associated with Stokes operators precesses around a fixed axis in the dynamic evolution of the BEC. The value of the processing frequency is determined by the strength of the linear coupling between two components of the BEC. When decoherence is involved, we find each component of the Stokes vector decays which implies that decoherence depolarizes the BEC.Comment: 10 pages, 2 figure

    Development of a high-sensitivity torsion balance to investigate the thermal Casimir force

    Full text link
    We report development of a high-sensitivity torsion balance to measure the thermal Casimir force. Special emphasis is placed on experimental investigations of a possible surface electric force originating from surface patch potentials that have been recently noticed by several experimental groups. By gaining a proper understanding of the actual contribution of the surface electric force in real materials, we aim to undertake precision force measurements to resolve the Casimir force at finite temperature in real metals, as well as in other semiconducting materials, such as graphene.Comment: Proceedings of the 10th International Conference "Quantum Field Theory Under the Influence of External Conditions"; 11 pages and 4 figure

    Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms

    Get PDF
    Organosulfate species have recently gained attention for their potentially significant contribution to secondary organic aerosol (SOA); however, their temporal behavior in the ambient atmosphere has not been probed in detail. In this work, organosulfates derived from isoprene were observed in single particle mass spectra in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Real-time measurements revealed that the highest organosulfate concentrations occurred at night under a stable boundary layer, suggesting gas-to-particle partitioning and subsequent aqueous-phase processing of the organic precursors played key roles in their formation. Further analysis of the diurnal profile suggests possible contributions from multiple production mechanisms, including acid-catalysis and radical-initiation. This work highlights the potential for additional SOA formation pathways in biogenically influenced urban regions to enhance the organic aerosol burden

    Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry - Part 1: Single Particle Atmospheric Observations in Atlanta

    Get PDF
    Organosulfate species have recently been identified as a potentially significant class of secondary organic aerosol (SOA) species, yet little is known about their behavior in the atmosphere. In this work, organosulfates were observed in individual ambient aerosols using single particle mass spectrometry in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Organosulfates derived from biogenically produced isoprene were detected as deprotonated molecular ions in negative-ion spectra measured by aerosol time-of-flight mass spectrometry; comparison to high-resolution mass spectrometry data obtained from filter samples corroborated the peak assignments. The size-resolved chemical composition measurements revealed that organosulfate species were mostly detected in submicrometer aerosols and across a range of aerosols from different sources, consistent with secondary reaction products. Detection of organosulfates in a large fraction of negative-ion ambient spectra − ca. 90−95% during ANARChE and ~65% of submicrometer particles in AMIGAS − highlights the ubiquity of organosulfate species in the ambient aerosols of biogenically influenced urban environments

    Spacetime Emergence and General Covariance Transmutation

    Get PDF
    Spacetime emergence refers to the notion that classical spacetime "emerges" as an approximate macroscopic entity from a non-spatio-temporal structure present in a more complete theory of interacting fundamental constituents. In this article, we propose a novel mechanism involving the "soldering" of internal and external spaces for the emergence of spacetime and the twin transmutation of general covariance. In the context of string theory, this mechanism points to a critical four dimensional spacetime background.Comment: 11 pages, v2: version to appear in MPL

    Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    Get PDF
    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented.Comment: Resubmitted to Physics in Medicine and Biology. Text has been modified according to referee comments, and typos in the equations have been correcte
    corecore