61 research outputs found

    Self-normalized Cram\'{e}r type moderate deviations for the maximum of sums

    Full text link
    Let X1,X2,...X_1,X_2,... be independent random variables with zero means and finite variances, and let Sn=i=1nXiS_n=\sum_{i=1}^nX_i and Vn2=i=1nXi2V^2_n=\sum_{i=1}^nX^2_i. A Cram\'{e}r type moderate deviation for the maximum of the self-normalized sums max1knSk/Vn\max_{1\leq k\leq n}S_k/V_n is obtained. In particular, for identically distributed X1,X2,...,X_1,X_2,..., it is proved that P(max1knSkxVn)/(1Φ(x))2P(\max_{1\leq k\leq n}S_k\geq xV_n)/(1-\Phi (x))\rightarrow2 uniformly for 0<xo(n1/6)0<x\leq\mathrm{o}(n^{1/6}) under the optimal finite third moment of X1X_1.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ415 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    On non-stationary threshold autoregressive models

    Full text link
    In this paper we study the limiting distributions of the least-squares estimators for the non-stationary first-order threshold autoregressive (TAR(1)) model. It is proved that the limiting behaviors of the TAR(1) process are very different from those of the classical unit root model and the explosive AR(1).Comment: Published in at http://dx.doi.org/10.3150/10-BEJ306 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention

    Get PDF
    Given the extensive spread and ecological consequences of exotic Spartina alterniflora (S. alterniflora) over the coast of mainland China, monitoring its spatiotemporal invasion patterns is important for the sake of coastal ecosystem management and ecological security. In this study, Landsat series images from 1990 to 2015 were used to establish multi-temporal datasets for documenting the temporal dynamics of S. alterniflora invasion. Our observations revealed that S. alterniflora had a continuous expansion with the area increasing by 50,204 ha during the considered 25 years. The largest expansion was identified in Jiangsu Province during the period of 1990-2000, and in Zhejiang Province during the periods 2000-2010 and 2010-2015. Three noticeable hotspots for S. alterniflora invasion were Yancheng of Jiangsu, Chongming of Shanghai, and Ningbo of Zhejiang, and each had a net area increase larger than 5000 ha. Moreover, an obvious shrinkage of S. alterniflora was identified in three coastal cities including the city of Cangzhou of Hebei, Dongguan, and Jiangmen of Guangdong. S. alterniflora invaded mostly into mudflats (>93%) and shrank primarily due to aquaculture (55.5%). This study sheds light on the historical spatial patterns in S. alterniflora distribution and thus is helpful for understanding its invasion mechanism and invasive species management

    Online and semi-online scheduling on two hierarchical machines with a common due date to maximize the total early work

    Full text link
    In this study, we investigated several online and semi-online scheduling problems on two hierarchical machines with a common due date to maximize the total early work. For the pure online case, we designed an optimal online algorithm with a competitive ratio of 2\sqrt 2. For the case when the total processing time is known, we proposed an optimal semi-online algorithm with a competitive ratio of 43\frac{4}{3}. Additionally, for the cases when the largest processing time is known, we gave optimal algorithms with a competitive ratio of 65\frac{6}{5} if the largest job is a lower hierarchy one, and of 51\sqrt 5-1 if the largest job is a higher hierarchy one, respectively

    Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China

    Get PDF
    Spartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. View Full-Tex

    Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images

    Get PDF
    Plant invasion imposes significant threats to biodiversity and ecosystem function. Thus, monitoring the spatial pattern of invasive plants is vital for effective ecosystem management. Spartina alterniflora (S. alterniflora) has been one of the most prevalent invasive plants along the China coast, and its spread has had severe ecological consequences. Here, we provide new observation from Landsat operational land imager (OLI) images. Specifically, 43 Landsat-8 OLI images from 2014 to 2016, a combination of object-based image analysis (OBIA) and support vector machine (SVM) methods, and field surveys covering the whole coast were used to construct an up-to-date dataset for 2015 and investigate the spatial variability of S. alterniflora in the coastal zone of mainland China. The classification results achieved good estimation, with a kappa coefficient of 0.86 and 96% overall accuracy. Our results revealed that there was approximately 545.80 km2 of S. alterniflora distributed in the coastal zone of mainland China in 2015, from Hebei to Guangxi provinces. Nearly 92% of the total area of S. alterniflora was distributed within four provinces: Jiangsu, Shanghai, Zhejiang, and Fujian. Seven national nature reserves invaded by S. alterniflora encompassed approximately one-third (174.35 km2) of the total area of S. alterniflora over mainland China. The Yancheng National Nature Reserve exhibited the largest area of S. alterniflora (115.62 km2) among the reserves. Given the rapid and extensive expansion of S. alterniflora in the 40 years since its introduction and its various ecological effects, geospatially varied responding decisions are needed to promote sustainable coastal ecosystems

    Separation of rare earth elements from the leaching solution of waste phosphors by solvent extraction with Cyanex 272 and its mixture with Alamine 336

    No full text
    Waste phosphors contain rare earth elements (REEs) such as yttrium (Y), europium (Eu), cerium (Ce), terbium (Tb) and lanthanum (La). Separation of these REEs from the leaching solution of waste phosphors was investigated by solvent extraction with single Cyanex 272, binary mixture (mixture of Cyanex 272 and Alamine 336), ionic liquid (prepared by Cyanex 272 and Aliquat 336) in kerosene. The effect of solution pH and extractants concentration was mainly investigated. The results indicated that Y(III) was selectively extracted by single Cyanex 272 over the other four REEs from the HCl solution with initial pH range from 3 to 5. Synergistic extraction with the binary mixture was enough for the extraction of Y(III), Tb(III) and Eu(III) with a small amount of Ce(III). Scrubbing with pure Y(III) solution with intermediate acidity was effective in scrubbing Ce(III) from the loaded binary mixture organic phase. Stripping behavior of the Y(III), Tb(III) and Eu(III) by HCl solution was similar to each other. Tb(III) and Eu(III) can be separated by extraction with the binary mixture followed by scrubbing with pure Tb(III) solution. McCabe-Thiele diagrams were constructed for the extraction of Y(III) by single Cyanex 272 and that of Tb(III) by the mixture. A process was proposed for the separation of REEs from the leaching solution of waste phosphors by solvent extraction

    Online Bottleneck Matching Problem with Two Heterogeneous Sensors in a Metric Space

    No full text
    In this paper, we consider the online matching problem with two heterogeneous sensors s1 and s2 in a metric space (X,d). If a request r is assigned to sensor s1, the service cost of r is the distance d(r,s1). Otherwise, r is assigned to sensor s2, and the service cost of r is d(r,s2)w, where w≥1 is the weight of sensor s2. The goal is to minimize the maximum matching cost, we design an optimal online algorithm with a competitive ratio of 1+w+1w for 1≤w≤1.839, and an optimal online algorithm with a competitive ratio of w+1+w2+6w+12 for w>1.839
    corecore