11 research outputs found
p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates
Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4^(CRBN) and p97 pathways
Valosin-containing protein (VCP)–Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor
Protein quality control (PQC) plays an important role in stemming neurodegenerative diseases and is essential for the growth of some cancers. Valosin-containing protein (VCP)/p97 plays a pivotal role in multiple PQC pathways by interacting with numerous adaptors that link VCP to specific PQC pathways and substrates and influence the post-translational modification state of substrates. However, our poor understanding of the specificity and architecture of the adaptors, and the dynamic properties of their interactions with VCP hinders our understanding of fundamental features of PQC and how modulation of VCP activity can best be exploited therapeutically. In this study we use multiple mass spectrometry-based proteomic approaches combined with biophysical studies to characterize the interaction of adaptors with VCP. Our results reveal that most VCP-adaptor interactions are characterized by rapid dynamics that in some cases are modulated by the VCP inhibitor NMS873. These findings have significant implications for both the regulation of VCP function and the impact of VCP inhibition on different VCP-adaptor complexes
Valosin-containing protein (VCP)–Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor
Protein quality control (PQC) plays an important role in stemming neurodegenerative diseases and is essential for the growth of some cancers. Valosin-containing protein (VCP)/p97 plays a pivotal role in multiple PQC pathways by interacting with numerous adaptors that link VCP to specific PQC pathways and substrates and influence the post-translational modification state of substrates. However, our poor understanding of the specificity and architecture of the adaptors, and the dynamic properties of their interactions with VCP hinders our understanding of fundamental features of PQC and how modulation of VCP activity can best be exploited therapeutically. In this study we use multiple mass spectrometry-based proteomic approaches combined with biophysical studies to characterize the interaction of adaptors with VCP. Our results reveal that most VCP-adaptor interactions are characterized by rapid dynamics that in some cases are modulated by the VCP inhibitor NMS873. These findings have significant implications for both the regulation of VCP function and the impact of VCP inhibition on different VCP-adaptor complexes
Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress
Recommended from our members
Liver receptor homolog‐1 is a critical determinant of methyl‐pool metabolism
UnlabelledBalance of labile methyl groups (choline, methionine, betaine, and folate) is important for normal liver function. Quantitatively, a significant use of labile methyl groups is in the production of phosphatidylcholines (PCs), which are ligands for the nuclear liver receptor homolog-1 (LRH-1). We studied the role of LRH-1 in methyl-pool homeostasis and determined its metabolic effects using the methionine and choline-deficient (MCD) diet, which depletes methyl groups and results in a deleterious decrease in the PC-to-phosphatidylethanolamine ratio. We found that MCD diet-fed, liver-specific LRH-1 knockout mice (Lrh-1(-/-) ) do not show the expected decreased methyl-pool and PC/phosphatidylethanolamine ratio and are resistant to the hepatitis and fibrosis normally induced by the diet. Adaptive responses observed in wild-type mice on the MCD diet were also observed in Lrh-1(-/-) mice on a normal diet. This includes reduced expression of the highly active glycine-n-methyltransferase and the biliary phospholipid floppase multidrug-resistance protein 2 (Mdr2/Abcb4), resulting in reduced consumption of methyl groups and biliary PC secretion. In vitro studies confirm that Gnmt and Mdr2 are primary LRH-1 target genes. Additional similarities between hepatic gene expression profiles in MCD diet-fed wild-type and untreated Lrh-1(-/-) mice suggest that methyl-pool deficiency decreases LRH-1 activity, and this was confirmed by in vitro functional results in cells maintained in MCD medium.ConclusionLRH-1 is a novel transcriptional regulator of methyl-pool balance; when the methyl-pool is depleted, decreased LRH-1 transactivation suppresses expression of key genes to minimize loss of labile methyl groups. (Hepatology 2016;63:95-106)
Recommended from our members
Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution.
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI: http://dx.doi.org/10.7554/eLife.01694.001