61 research outputs found

    Natural products as a source of Coronavirus entry inhibitors

    Get PDF
    The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges

    Lipid-laden partially-activated plasmacytoid and CD4-CD8a+ dendritic cells accumulate in tissues in elderly mice

    Get PDF
    Background - Aging is associated with a decline in lymphocyte function however, little is known about dendritic cell (DC) subsets and aging. Aging is also associated with increasing circulating lipid levels and intracellular lipid accumulation modulates DC function. Whether age-associated increases in lipid levels influence DC biology is unknown. Thus, the effects of aging on DC subsets were assessed in vivo using young adult and elderly C57BL/6 J mice. Results - Major age-related changes included increased CD11c+ DC numbers in lymph nodes, spleens and livers, but not lungs, and significantly increased proportions of plasmacytoid (pDC) and CD4-CD8α+ DCs in lymph nodes and livers. Other changes included altered pDC activation status (decreased CD40, increased MHC class-I and MHC class-II), increased lipid content in pDCs and CD4-CD8α+ DCs, and increased expression of key mediators of lipid uptake including lipoprotein lipase, scavenger receptors (CD36, CD68 and LRP-1) in most tissues. Conclusions - Aging is associated with organ-specific numerical changes in DC subsets, and DC activation status, and increased lipid content in pDCs and CD4-CD8α+ DCs. Up-regulation of lipoprotein lipase and scavenger receptors by lipid-rich pDCs and CD4-CD8α+ DCs suggests these molecules contribute to DC lipid accumulation in the elderly. Lipid accumulation and modulated activation in pDCs and CD4-CD8α+ DCs may contribute to the declining responses to vaccination and infection with age

    Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal

    Get PDF
    Background: Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. Results: Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 – 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 – 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. Conclusions: The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women

    GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic β-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in β-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 β-cells and rodent islets to the GLP-1R agonist Exendin-4 (50nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18hours promotes metabolic reprogramming of β-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of HypoxiaInducible Factor 1 alpha (HIF-1α) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in β-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated β-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression

    Epigenetic effects of metformin: From molecular mechanisms to clinical implications

    Get PDF
    There is a growing body of evidence that links epigenetic modifications to type 2 diabetes. Researchers have more recently investigated effects of commonly used medications, including those prescribed for diabetes, on epigenetic processes. This work reviews the influence of the widely used antidiabetic drug metformin on epigenomics, microRNA levels and subsequent gene expression, and potential clinical implications. Metformin may influence the activity of numerous epigenetic modifying enzymes, mostly by modulating the activation of AMP-activated protein kinase (AMPK). Activated AMPK can phosphorylate numerous substrates, including epigenetic enzymes such as histone acetyltransferases (HATs), class II histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), usually resulting in their inhibition; however, HAT1 activity may be increased. Metformin has also been reported to decrease expression of multiple histone methyltransferases, to increase the activity of the class III HDAC SIRT1 and to decrease the influence of DNMT inhibitors. There is evidence that these alterations influence the epigenome and gene expression, and may contribute to the antidiabetic properties of metformin and, potentially, may protect against cancer, cardiovascular disease, cognitive decline and aging. The expression levels of numerous microRNAs are also reportedly influenced by metformin treatment and may confer antidiabetic and anticancer activities. However, as the reported effects of metformin on epigenetic enzymes act to both increase and decrease histone acetylation, histone and DNA methylation, and gene expression, a significant degree of uncertainty exists concerning the overall effect of metformin on the epigenome, on gene expression, and on the subsequent effect on the health of metformin users

    Human papillomavirus, high-grade intraepithelial neoplasia and killer immunoglogulin-like receptors: a Western Australian cohort study

    Get PDF
    Background: Human papillomavirus (HPV) is the causative agent in cervical cancer and HPV genotypes 16 and 18 cause the majority of these cancers. Natural killer (NK) cells destroy virally infected and tumour cells via killer immunoglobulin-like receptors (KIR) that recognize decreased MHC class I expression. These NK cells may contribute to clearance of HPV infected and/or dysplastic cells, however since KIR controls NK cell activity, KIR gene variation may determine outcome of infection.Methods: KIR gene frequencies were compared between 147 patients with a history of high-grade cervical intraepithelial neoplasia (CIN) and a control population of 187, to determine if any KIR genes are associated with high-grade CIN. In addition a comparison was also made between cases of high grade CIN derived from 30 patients infected with HPV 16/18 and 29 patients infected with non-16/18 HPV to determine if KIR variation contributes to the disproportional carcinogenesis derived from HPV 16/18 infection.Results: High-grade CIN was weakly associated with the absence of KIR2DL2 and KIR2DS2 (p = 0.046 and 0.049 respectively, OR 0.6; 95% CI 0.4 – 0.9) but this association was lost after correction for multi-gene statistical analysis.No difference in KIR gene frequencies was found between high-grade CIN caused by HPV 16/18 and non-16/18.Conclusion: No strong association between KIR genes, high-grade CIN and HPV genotype was found in the Western Australian population

    Influence of ARHGEF3 and RHOA Knockdown on ACTA2 and Other Genes in Osteoblasts and Osteoclasts

    Get PDF
    Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003– 0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism

    Group mindfulness based cognitive therapy vs group support for self-injury among young people: Study protocol for a randomised controlled trial

    Get PDF
    Background: Non-suicidal self-injury (NSSI) is a transdiagnostic behaviour that can be difficult to treat; to date no evidence based treatment for NSSI exists. Mindfulness Based Cognitive Therapy (MBCT) specifically targets the mechanisms thought to initiate and maintain NSSI, and thus appears a viable treatment option. The aims of the current study are to test the ability of MBCT to reduce the frequency and medical severity of NSSI, and explore the mechanisms by which MBCT exerts its effect. Methods/Design: We will conduct a parallel group randomised controlled trial of Mindfulness Based Cognitive Therapy (MBCT) versus Supportive Therapy (ST) in young people aged 18-25 years. Computerised block randomisation will be used to allocate participants to groups. All participants will meet the proposed DSM-5 criteria for NSSI (i.e. five episodes in the last twelve months). Participants will be excluded if they: 1) are currently receiving psychological treatment, 2) have attempted suicide in the previous 12 months, 3) exhibit acute psychosis, 4) have a diagnosis of borderline personality disorder, or 5) have prior experience of MBCT. Our primary outcome is the frequency and medical severity of NSSI. As secondary outcomes we will assess changes in rumination, mindfulness, emotion regulation, distress tolerance, stress, and attentional bias, and test these as mechanisms of change. Discussion: This is the first randomised controlled trial to test the efficacy of MBCT in reducing NSSI. Evidence of the efficacy of MBCT for self-injury will allow provision of a brief intervention for self-injury that can be implemented as a stand-alone treatment or integrated with existing treatments for psychiatric disorders

    Molecular Diagnosis and Treatment of Two X-Linked Disorders

    No full text
    corecore