22 research outputs found
Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals
SummaryHere, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture
Patient-derived and gene-edited pluripotent stem cells lacking NPHP1 recapitulate juvenile nephronophthisis in abnormalities of primary cilia and renal cyst formation
Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies
GPR17 is an essential regulator for the temporal adaptation of Sonic hedgehog signalling in neural tube development
Dorsal-ventral pattern formation of the neural tube is regulated by temporal and spatial activities of extracellular signalling molecules. Sonic hedgehog (Shh) assigns ventral neural subtypes via activation of the Gli transcription factors. Shh activity in the neural progenitor cells changes dynamically during differentiation, but the mechanisms regulating this dynamicity are not fully understood.
Here we show that temporal change of the intracellular cAMP level confers the temporal Shh signal, and the purinergic-type G-protein coupled receptor GPR17 plays an essential role for this regulation. GPR17 is highly expressed in the ventral progenitor regions of the neural tube and acts as a negative regulator of the Shh signal in chick embryos. While the activation of the GPR17-related signal inhibits ventral identity, perturbation of GPR17 expression leads to aberrant expansion of ventral neural domains. Notably, perturbation of GPR17 expression partially inhibits the negative feedback of Gli activity. Moreover, GPR17 increases cAMP activity, suggesting that it exerts its function by inhibiting the processing of Gli3 protein. GPR17 also negatively regulates Shh signalling in neural cells differentiated from mouse embryonic stem cells, suggesting that GPR17 function is conserved among different organisms. Our results demonstrate that GPR17 is a novel negative regulator of Shh signalling in a wide range of cellular contexts
Generation of two human induced pluripotent stem cell lines derived from two X-linked adrenoleukodystrophy patients with ABCD1 mutations
Adrenoleukodystrophy (ALD) is an X-linked genetic disorder, characterized by demyelination in the central nervous system and adrenal insufficiency. Human induced pluripotent stem cell (hiPSC) lines derived from two Japanese male patients with ALD were generated from skin fibroblasts using retroviral vectors. The generated hiPSC lines showed self-renewal and pluripotency, and carried either a missense or a nonsense mutation in ABCD1 gene. Since the molecular pathogenesis caused by ABCD1 dysfunction remains unclear, these cell resources provide useful tools to establish disease models and to develop new therapies for X-ALD
Generation of human induced pluripotent stem cell lines derived from four Rett syndrome patients with MECP2 mutations
Rett syndrome is characterized by severe global developmental impairments with autistic features and loss of purposeful hand skills. Here we show that human induced pluripotent stem cell (hiPSC) lines derived from four Japanese female patients with Rett syndrome are generated from peripheral blood mononuclear cells using Sendai virus vectors. The generated hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift, missense, or nonsense mutations in the MECP2 gene. Since the molecular pathogenesis caused by MECP2 dysfunction remains unclear, these cell resources are useful tools to establish disease models and develop new therapies for Rett syndrome
Generation of Induced Pluripotent Stem Cells from Human Nasal Epithelial Cells Using a Sendai Virus Vector
<div><p>The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08–0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.</p> </div