2 research outputs found

    Extending the search space of Full waveform inversion beyond the single-scattering Born approximation: A tutorial review

    No full text
    International audienceFull Waveform Inversion can be made immune to cycle skipping by matching the recorded data arbitrarily well from inaccurate subsurface models. To achieve this goal, the simulated wavefields can be computed in an extended search space as the solution of an overdetermined problem aiming at jointly satisfying the wave equation and fitting the data in a least-squares sense. This leads to data-assimilated wavefields that are computed by solving the wave equation in the inaccurate background model with a feedback term to the data added to the source term. Then, the subsurface parameters are updated by canceling out these additional source terms, sometime called unwisely wave-equation errors, to push the background model towards the true model in the left-hand side wave-equation operator. Although many studies were devoted to these approaches with promising numerical results, their governing physical principles and their relationships with classical FWI do not seem to be understood well yet. The goal of this tutorial is to review these principles in the framework of inverse scattering theory whose governing forward equation is the Lippmann-Schwinger equation. From this equation, we show how the data-assimilated wavefields embed an approximation of the scattered field generated by the sought model perturbation and how they modify the sensitivity kernel of classical FWI beyond the Born approximation. We also clarify how the approximation with which these wavefields approximate the unknown true wavefields is accounted for in the adjoint source and in the full Newton Hessian of the parameter-estimation problem. The theory is finally illustrated with numerical examples. Understanding the physical principles governing these methods is a necessary prerequisite to assess their potential and limits and design relevant heuristics to manage the latter

    Does 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon case study

    No full text
    Frequency-domain Full Waveform Inversion (FWI) is potentially amenable to efficient processing of full-azimuth long-offset stationary-recording seabed acquisition carried out with sparse layout of ocean bottom nodes (OBNs) and broadband sources because the inversion can be performed with a few discrete frequencies. However, computing efficiently the solution of the forward (boundary-value) problem in the frequency domain with linear algebra solvers remains a challenge for large computational domains involving tens to hundreds of millions of parameters. We illustrate the feasibility of 3D frequency-domain FWI with the 2015/16 Gorgon OBN case study in the NorthWestern shelf, Australia. We solve the forward problem with the massively-parallel multifrontal direct solver MUMPS, which includes four key features to reach high computational efficiency: An efficient parallelism combining message-passing interface and multithreading, block low-rank compression, mixed precision arithmetic and efficient processing of sparse sources. The Gorgon subdataset involves 650 OBNs that are processed as reciprocal sources and 400,000 sources. Mono-parameter FWI for vertical wavespeed is performed in the visco-acoustic VTI approximation with a classical frequency continuation approach proceeding from a starting frequency of 1.7 Hz to a final frequency of 13 Hz. The target covers an area ranging from 260 km2 (frequency > 8.5 Hz) to 705 km2 (frequency < 8.5 Hz) for a maximum depth of 8 km. Compared to the starting model, FWI dramatically improves the reconstruction of the bounding faults of the Gorgon horst at reservoir depths as well as several intra-horst faults and several horizons of the Mungaroo formation down to a depth of 7 km
    corecore