38 research outputs found

    Determination of persistent cyclic organochlorine residues in sediment slurry by microporous membrane liquid-liquid extraction and gas chromatography-mass spectrometry

    Get PDF
    A method, using microporous membrane liquid-liquid extraction technique (MMLLE) and gas chromatography with an electron capture detector (GC-ECD) and gas chromatograph coupled to a mass spectrometer, was developed for the analysis of cyclic organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sediment slurry. The MMLLE extraction employed isooctane as the organic liquid that was immobilised in the hollow fibre pores and in the lumen, at optimal sample pH value of 2.0 for OCPs and 7 for PCBs. The effect of triton x-100, in enhancing the dissolution of the compounds from sediment, was found to be optimal at a value of 0.15%, while the ionic strength was optimal at a value of 0.01 M. Samples from coastlines along the Indian Ocean in the southern parts of South Africa were found to be contaminated with cis and trans chlordane at concentrations of up to 0.003 mg/kg, while samples from northern parts were contaminated with 2,2’,4’,4-tetrachloro-1,1’biphenyl at concentrations of up to 0.02 mg/kg.Keywords: Organochlorine pesticides, polychlorinated biphenyls, hollow fibre liquid phase micro-extraction, high performance liquid chromatography, mass spectrometr

    Comparative study of EVA-Cloisite® 20A and heat-treated EVA-Cloisite® 20A on heavy-metal adsorption properties

    Get PDF
    Ethylene vinyl acetate (EVA)/ Cloisite® 20A (C20A) composite fabricated via the melt-blending method was used for the development of a heavy-metal adsorbent through acid and heat treatment. Heat-treated composites were produced at 400°C to 1 000°C in air and N2 atmospheres. The materials were characterised through TGA, FT-IR, contact angle and Zetasizer. Treating EVA/C20A composites with H2SO4 at 130°C reduced the contact angle from 99.73° to 30.40°. The acid-functionalised composite was tested for the removal of Pb2+ and an adsorption capacity of 49 mg·g-1 was recorded while the heat-treated composite exhibited an adsorption capacity of 153 mg·g-1

    Removal of waterborne bacteria from surface water and groundwater by cost-effective household water treatment systems (HWTS): A sustainable solution for improving water quality in rural communities of Africa

    Get PDF
    In this study 5 household water-treatment devices/systems (HWTS) were constructed using inexpensive local materials (sand, gravel, zeolites and clays). They included the silver-impregnated porous pot filter (SIPP), the ceramic candle filter (CCF), the conventional biosand filter (BSF-S), a modified biosand filter with zeolites (BSF-Z), and a bucket filter (BF).Their ability to remove turbidity and pathogenic bacteria (Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae) from synthetic sterile water, groundwater and surface-water sources was evaluated. The flow rates ranged from 0.05 ℓ·h-1 to 2.49 ℓ·h-1 for SIPP; 1 ℓ·h-1 to 4 ℓ·h-1 for CCF; 0.81 ℓ·h-1 to 6.84 ℓ·h-1 for BSF-S; 1.74 ℓ·h-1 to 19.2 ℓ·h-1 for BSF-Z; and from 106.5 ℓ·h-1 to 160.5 ℓ·h-1 for BF. The highest (64% to 98% (0.74 to 1.08 NTU)) and lowest (14% to 76% (2.91 to 7.19 NTU)) average percentage turbidity removals were noted for SIPP and BF, respectively. The SIPP was the only device that consistently removed 100% of all target pathogens throughout the study. Its performance was found to be significantly superior (p<0.05) compared to that of the other four devices. Sixty (60%) to 100% bacterial removals were observed for BSF-S; 90% to 100% for BSF-Z; 90% to 100% for CCF; and 40% to 99.9% for BF. Based on the findings of this study the SIPP can be recommended for use by rural communities as it consistently produced high-quality water that complied with the SANS 241 turbidity and microbiological limits for drinking water.Keywords: safe drinking water, household water treatment, waterborne pathogen

    A comparative assessment of chemical contaminant removal by three household water treatment filters

    Get PDF
    This study was aimed at modifying the design of, constructing, evaluating and comparing chemical contaminant removal efficiency by, 3 household water treatment filters. The filters were: 1) biosand filter (BSF); 2) the ceramic candle filter (CCF); 3) bucket filter (BF). The filters were evaluated for their efficiency in removal of calcium, magnesium, iron and arsenic, nitrates, phosphates, fluorides, total organic carbon and turbidity, by determining levels of these contaminants in water before and after filtration through the filters. The effects of chlorophyll a concentration(mg/m3) of intake water, as well as the effects of turbidity of  intake water, on the flow rates of the filters was quantified and recommendations on the quality of water that could be filtered through these filters were made. Chlorophyll a concentrations in intake water had a positive correlation with the turbidity of the unfiltered water (r = 0.607).The flow rates of the filters were 0.8 â„“/h - 6.48 â„“/h (BSF), 0.05 â„“/h - 2.495 â„“/h (CCF) and 106.5 â„“/h - 160.5 â„“/h (BF). Because of the large particle size materials used in constructing  the BF and the design, which caused it to be a rapid sand filter, the biosand filter (BF) was found to have flow rates significantly higher than those of BSF and CCF (p ≥ 0.05). There was no difference in the efficiency of removal of metals (average 40% - 50%) by the filters (p ≥ 0.05), as the same removal mechanisms (straining, ammonification, fixation and adsorption) were believed to be taking place in all of the filters. The CCF removed total organic carbon (TOC) (up to 39%) better than the BSF and BF (p ≤ 0.05). The filters removed turbidity effectively with the BSF having the highest reduction (70%). The average turbidity reduction efficiency was in the order BSF (70%) > BF (51%) > CCF (44%). The BSF, CCF and BF reduced turbidity and other contaminants even after filtering a total cumulative volume greater than 1 000 â„“.Keywords: Biosand filter, bucket filter, ceramic candle filter, flow rate, chlorophyll a

    Acidithiobacillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp. mixed strains for use in cobalt and copper removal from water

    Get PDF
    Bacteria from the genus Acidithiobacillus, Leptospirillum and Ferroplasma, Sulphobacillus are often associated with water remediation. In this study a consortium of Acidithiobacillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp. was cultured and used to remove Cu2+ and Co2+ from synthetic aqueous sulphate solutions. The influence of experimental conditions such as pH, temperature, time, volume and metal concentration on the efficiency of the biosorption process was investigated. Biosorption of 54 to 67% Cu (pH 2, 37°C, 24 h) and 23-70% Co (pH 2, 37°C, 24 h) was observed from solutions containing 3.86 g·l-1 Cu2+ ions and 3.36 g·l-1 Co2+ ions. Such findings suggest that if optimal conditions for biosorption of the metals by micro-organisms are achieved, this should afford a cost-effective method of removing metal species from water and aqueous solution

    Natural organic matter (NOM) in South African waters: NOM characterisation using combined assessment techniques

    Get PDF
    In order to remove natural organic matter (NOM) from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on the local environment. The main thrust of this study was to ascertain whether a cocktail of characterisation protocols could help to determine the nature, composition and character of NOM in South African waters. The characterisation of South African water sources was done by sampling 8 different water treatment plants located within the 5 major source water types in South Africa. The NOM composition of all of the samples was first studied by applying conventional techniques (UV, DOC, SUVA and bulk water parameters). NOM characterisation was then further conducted using advanced techniques (BDOC, PRAM and FEEM), which were aimed at developing rapid assessment protocols. The FEEM and UV results revealed that the samples consisted mainly of humic substances with a high UV-254 absorbance, while some samples had marine humic substances and non-humic substances. The samplefs DOC results were within the range of 3.5 to 22.6 mgE..1 C, which was indicative of the extent of variation of NOM quantities in the regions where samples were obtained. The BDOC fraction of the NOM ranged between 12 and 66%, depending on the geographical location of the sampling site. A modified PRAM was utilised to characterise the changes in NOM polarity in the water treatment process. PRAM results also indicated that the NOM samples were mostly hydrophobic. The composition and character of the NOM was found to vary from one water treatment plant to another. Combining conventional and advanced techniques could be a powerful tool for NOM characterisation and for extracting detailed information on NOM character, which should inform its treatability

    Characterisation of natural organic matter (NOM) and its removal using cyclodextrin polyurethanes

    Get PDF
    Natural organic matter (NOM) occurs in all natural water sources when animal and plant material breaks down. NOM in water may react with chlorine and other disinfectants to produce disinfection by-products (DBPs), many of which are either carcinogenic or mutagenic. In this study the NOM content of the raw water from the Vaalkop Water Treatment Plant (which uses both chlorination and ozonation as treatment protocols) was characterised after fractionation on ion-exchange resins. Fractionation at different pH values resulted in the isolation of a neutral, a basic and an acidic component of either predominantly hydrophobic or hydrophilic NOM. In addition, NOM results from 3 open water bodies in Johannesburg were evaluated in the same manner. As expected, NOM from all water sources was predominantly hydrophobic (~60%). Each of the 6 isolated NOM fractions was percolated through synthetic cyclodextrin (CD) polyurethanes to determine the extent to which the CD polymers can remove NOM from water. The hydrophobic basic fraction and the hydrophilic acid fraction were most efficiently removed (24% and 10%, respectively). The remaining fractions were not much affected by the polymer treatment

    Fluorescent sensing and determination of mercury (II) ions in water

    Get PDF
    The presence of heavy metals released from industrial activities into water streams is an ever-growing challenge to ensuring a safe and clean aquatic environment. Detection and determination of the levels of these heavy metals in wastewater is an important step before any measures can be taken. In this study we report on a fluorescent sensing probe based on a naphthyl azo dye modified dibenzo-18-crown-6-ether (DB18C6) for the detection and determination of mercury (II) ions in water. The probe showed high sensitivity and selectivity towards the mercury (II) ion among various alkali, alkaline earth, and transition metal ions. The mercury (II) ion quenched the fluorescence of the probe. Stern-Volmer quenching constants (Ksv) were found to be highest for Hg2+ ion at 1.18 x 105 M-1 compared to 3.85 x 104 M-1 for copper (II) ion. The stoichiometry of the sensor–metal ion interaction was found to be 1:1 for both metal ions using Job plots. The detection limit for Hg2+ was 1.25 x 10-8 M. The dye modified crown ether was then used to detect mercury in a water sample from a coal-fired power plant and to determine the amount of mercury in the water sample.Keywords: azo dye, crown ether, fluorescence, mercury (II), sensor, wate

    Degradation Studies of β-Cyclodextrin Polyurethane Polymers using Soil Burial Experiments

    Get PDF
    Degradation studies of β-cyclodextrin polymers cross-linked with toluene-2,4-diisocyanate (TDI) and hexamethylene diisocyanate (HMDI) were carried out by exposing the polymers to different soil types for up to 120 days. The aim of the study was to determine the fate of these novel polymers in the environment. The polymers were either digested with sulphuric acid prior to performing a soil burial test or buried undigested. Results from the study indicate that the β-CD/TDI polymers with aromatic links underwent a greater mass loss during soil burial when first digested in sulphuric acid (ca. 50 % maximum mass loss). The β-CD/HMDIpolymers, on the other hand, underwent the same mass loss for both the digested and undigested polymers (ca. 30 % maximum mass loss). Although the Fourier transform infrared (FTIR) spectroscopy data suggested no changes in the overall polymer structures, the scanning electron microscopy (SEM) micrographs revealed changes in the surface morphology of the polymers. Moreover, results of thermogravimetric analysis (TGA) point to polymer degradation under all conditions tested.Keywords: Degradation, cyclodextrin polyurethanes, scanning electron microscopy, soil burial test, microorganism

    Monitoring natural organic matter and disinfection by-products at different stages in two South African water treatment plants

    Get PDF
    Natural organic matter (NOM) is a complex organic material present in natural surface water. NOM can cause problems during water treatment . most notably the formation of toxic disinfection by-products. This study was undertaken in order to assess the effectiveness of some of the water treatment techniques employed by selected water supply companies in South Africa in dealing with NOM. Total organic carbon (TOC) and ultra violet (UV) absorbance at wavelength of 254 nm were measured andused to calculate specific ultra violet absorbance (SUVA), which was used to determine the changes in NOM concentration throughout the water treatment train. Other parameters measured include pH, turbidity, chemical oxygen demand (COD) and conductivity. Water samples were collected from two water treatment plants in South Africa, namely Sedibeng (Balkfontein) and Midvaal. The overall TOC reduction after the water treatment processes was 33% and 30% at Midvaal and Sedibeng, respectively. SUVA values were generally low (<2 ..mg-1.m-1) indicating the presence of aliphatic compounds and less earomaticityf in NOM of the water samples. Water insoluble ƒÀ-cyclodextrin (ƒÀ-CD) polyurethanes were then applied to the water to compare TOC reduction in addition to enormalf water treatment processes, and were found to provide up to 19% additional TOC decrease, and UV absorbance reduction was up to 78%. Results obtained using gas chromatography-mass spectrometry (GC-MS) analysis after chlorination, revealed that the water had the potential to form halomethane compounds with chloroform being the most dominant. Again, water-insoluble ƒÀ-CD polyurethanes were applied to the water as a treatment to remove trihalomethanes (THMs) and were found to efficiently remove up to 95% of THMs formed during the disinfection step. The treatment processes studied have limited ability in dealing with NOM and are not individually effective in NOM removal. Results obtained indicate that the application of ƒÀ-CD polyurethanes in addition to the water treatment processes may enhance NOM removal in water and significantly reduce the THMs formed
    corecore