2 research outputs found

    An evolutionary algorithmic approach to determine the Nash equilibrium in a duopoly with nonlinearities and constraints

    Get PDF
    This paper presents an algorithmic approach to obtain the Nash Equilibrium in a duopoly. Analytical solutions to duopolistic competition draw on principles of game theory and require simplifying assumptions such as symmetrical payoff functions, linear demand and linear cost. Such assumptions can reduce the practical use of duopolistic models. In contrast, we use an evolutionary algorithmic approach (EAA) to determine the Nash equilibrium values. This approach has the advantage that it can deal with and find optimum values for duopolistic competition modelled using non-linear functions. In the paper we gradually build up the competitive situation by considering non-linear demand functions, non-linear cost functions, production and environmental constraints, and production in discrete bands. We employ particle swarm optimization with composite particles (PSOCP), a variant of particle swarm optimization, as the evolutionary algorithm. Through the paper we explicitly demonstrate how EAA can solve games with constrained payoff functions that cannot be dealt with by traditional analytical methods. We solve several benchmark problems from the literature and compare the results obtained from EAA with those obtained analytically, demonstrating the resilience and rigor of our EAA solution approach

    Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization

    Get PDF
    Ship routing and scheduling problem is considered to meet the demand for various products in multiple ports within the planning horizon. The ports have restricted operating time, so multiple time windows are taken into account. The problem addresses the operational measures such as speed optimisation and slow steaming for reducing carbon emission. A Mixed Integer Non-Linear Programming (MINLP) model is presented and it includes the issues pertaining to multiple time horizons, sustainability aspects and varying demand and supply at various ports. The formulation incorporates several real time constraints addressing the multiple time window, varying supply and demand, carbon emission, etc. that conceive a way to represent several complicating scenarios experienced in maritime transportation. Owing to the inherent complexity, such a problem is considered to be NP-Hard in nature and for solutions an effective meta-heuristics named Particle Swarm Optimization-Composite Particle (PSO-CP) is employed. Results obtained from PSO-CP are compared using PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) to prove its superiority. Addition of sustainability constraints leads to a 4–10% variation in the total cost. Results suggest that the carbon emission, fuel cost and fuel consumption constraints can be comfortably added to the mathematical model for encapsulating the sustainability dimensions
    corecore