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An evolutionary algorithmic approach to determine the Nash equilibrium in a 

duopoly with nonlinearities and constraints 

Abstract 

This paper presents an algorithmic approach to obtain the Nash Equilibrium in a duopoly. 

Analytical solutions to duopolistic competition draw on principles of game theory and require 

simplifying assumptions such as symmetrical payoff functions, linear demand and linear cost. 

Such assumptions can reduce the practical use of duopolistic models. In contrast, we use an 

evolutionary algorithmic approach (EAA) to determine the Nash equilibrium values. This 

approach has the advantage that it can deal with and find optimum values for duopolistic 

competition modelled using non-linear functions. In the paper we gradually build up the 

competitive situation by considering non-linear demand functions, non-linear cost functions, 

production and environmental constraints, and production in discrete bands. We employ 

particle swarm optimization with composite particles (PSOCP), a variant of particle swarm 

optimization, as the evolutionary algorithm. Through the paper we explicitly demonstrate 

how EAA can solve games with constrained payoff functions that cannot be dealt with by 

traditional analytical methods. We solve several benchmark problems from the literature and 

compare the results obtained from EAA with those obtained analytically, demonstrating the 

resilience and rigor of our EAA solution approach.   

Key words: Nash Equilibrium, Evolutionary Algorithm, Swarm Intelligence, Constrained 

Games, Non-Linear Payoff Functions.  

Abbreviations: 

NE:  Nash Equilibrium 

EAA:              Evolutionary Algorithmic Approach 

BRF:  Best Responsive Function 

PR:                  Promising region 

PSO:    Particle Swarm Optimization 

PSOCP:  Particle Swarm Optimization with Composite Particles 

GBP:               Global Best Position 

LBP:                Local Best Position 
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1. Introduction 

The concept of Nash equilibrium (Nash, 1951) is central to the analysis of strategic 

interactions between different firms involved in non-cooperative games. Nash equilibrium 

(NE) is the stable state of a system involving competitive firms who try to optimize their 

personal pay off functions by employing a wide range of strategies. In other words, given the 

actions of other firms, no firm can improve its position by adopting a different strategy. In 

general, individual profit functions are considered as pay off functions. However it can also 

be minimizing loss function, maximizing sales etc. For the purpose of better illustration of 

our approach we restrict ourselves to a duopoly case where two firms will be involved in the 

game and pay off functions are their individual profit functions. Each firm responds in the 

best possible way, given the strategies of their competitors. This yields a best response 

function (BRF) for each firm that is employed to determine its decision, taking into account 

the decisions made by rival firms. Analytically, the point of intersection of all the BRFs, each 

one corresponding to a firm competing in the market, is known as the Nash equilibrium 

(Nash, 1950).  

The traditional analytical approach of attaining Nash Equilibrium involves two stages. The 

first stage is to determine mathematical expressions for BRF of each firm involved in the 

game by maximizing its corresponding pay off function using calculus principles. The second 

stage involves solving the system of best responses of all firms to attain NE. Hence in the 

analytical approach, we must differentiate up to second order in order to find out the BRF of 

each firm and solve the resulting cumbersome equations. This involves a mathematical 

obligation to check the continuity and differentiability of each pay off function up to its 

second order. Games that involve complicated pay off functions with sophisticated demand 

and cost functions require extensive mathematical skills to solve the differential equations 

which arise analytically (Agiza & Elsadany, 2004; Daskalkis & Goldberg, 2009; Fabrikant, 

Papadimitriou, & Berkeley, 2004; Grant Schoenebeck, 2006;  Maskin, 1986). This leads to 

the adoption of simplifying assumptions such as linearizing the non-linear functions or using 

adopting symmetrical functions (Cheng, Reeves, Vorobeychik, & Wellman, 2004) In 

addition, games are often solved with little consideration of constraints such as production 

capacity of each firm, production costs, and environmental obligations.  

A number of authors have used numerical or algorithmic approaches to solve for the Nash 

equilibrium (Razi, Shahri, & Kian, 2007; Konak, Kulturel-Konak, & Snyder, 2015; Wang, 

2013). Zhang & Zhou (2012) have built supply chain network equilibrium models as non-

linear problem formulations (Zhao & Nagurney, 2008); they employed smooth Newton 

algorithm (Ma, 2011) for solving the non-linear games but struggled to prove the existence 

and uniqueness of the equilibrium. A three stage game theoretic linear and un-constrained 

supply chain model is built by Xiao, Jin, Chen, Shi, & Xie (2010) employed traditional 

analytical approach and carried out complex calculations to examine existence of Nash 

equilibrium. Chern, Chan, Teng, & Goyal (2014) have proposed a non-cooperative Nash 

equilibrium solution in a vendor buyer supply chain model that could capture delay in 

payments; though they presented an unconstrained mathematical model, they had to solve a 

system of partial differential equations to prove the existence an equilibrium.  
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In this paper we put forward an evolutionary algorithmic approach to obtain the Nash 

equilibrium. An evolutionary algorithm is used to find the optimal value of a payoff function 

subject to a given set of constraints. Evolutionary algorithms work on the principle of random 

search technique in finding out the optimal value of the payoff function. Those random 

search techniques are iterative in nature and are not concerned with the nature and complexity 

of payoff function that is being maximized.  Particle swarm optimization (PSO) provides a 

heuristic to determine the optimal value of a non-linear function (Kennedy & Eberhart, 

1995). It is a population-based heuristic drawing on swarm intelligence with origins in the 

study of bird flocking, fish schooling and other swarm-type behaviours found in the 

biological world. Several variants have been developed to tackle complex situations with 

improved speed of convergence and quality of solutions, avoiding local entrapment and 

premature convergence (Nezami, Bahrampour, & Jamshidlou, 2013). These include a 

hybridized PSO back propagation algorithm (J.-R. Zhang, Zhang, Lok, & Lyu, 2007) and a 

modified PSO for adaptive equalization (Al-Awami, Zerguine, Cheded, Zidouri, & Saif, 

2011). Particle Swarm Optimization with Composite Particles (PSOCP) is the particular 

evolutionary algorithm employed in this paper (Liu, Yang, & Wang, 2010). Its qualities are 

described in the algorithm description in Section 4. Use of PSO as an optimization heuristic is 

still relatively novel in the field of production economics (Nearchou, 2011) but has been 

applied to assembly line (Nearchou, 2011), inventory classification (Tsai & Yeh, 2008) and 

combinatorial optimization problems (Kemmoé Tchomté & Gourgand, 2009).  

We use our evolutionary algorithmic approach to solve a variety of duopoly problems. EAA 

can deal with nonlinearities, discreteness and constraints that would be intractable using  

analytical approaches. As we are using a meta heuristic in the solution procedure we initially 

arrive at very near optimal solutions and hence the approximate Nash Equilibrium 

(Constantinos Daskalkis, Paul W. Goldberg, 2009). We then improve this approximate 

solution to obtain a solution very close to the exact Nash Equilibrium. The results from the 

PSOCP model are benchmarked against analytically derived solutions. The solutions for the 

Nash equilibria obtained from the EAA computational experiments deviate negligibly from 

the analytically derived solutions (less than 0.1%). The paper is novel in that, to our 

knowledge, this is the first time that evolutionary algorithms have been used to solve for the 

Nash equilibrium in duopoly models. 

2. Model and problem description 

Let us consider that a homogenous commodity is being produced by n  firms where the cost 

incurred to thi  firm for producing iq units of good is ( )C q
i i

, where iC is an increasing 

function of iq . The price of the product being sold is determined by the demand for that good 

in the market and the total output of the market ( )Q . As we presume that quantity of 

production is equal to the demand, specifically if the total output of the market is Q then the 

market price is determined through the function P(Q) where P is called the “inverse demand 

function”. If each firm produces and sells iq  units, total market output is given by (1).  
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  =  

1

n
Q q

i
i



                                                                                                                            (1) 

The market price of that product is determined by the function ( )P Q . Then revenue of
 thi firm 

 iR is calculated from equation (2) 

 = ( )

     = ( .... )                                                                                                    (2)
1 2

R q P Q
i i

q P q q q
i n



   

      

We consider the profit function of each firm as its payoff function. So the profit function ( )
i

  

of thi  firm is computed by deducting the total cost of production from the revenue it earns for 

iq  units in (3). 

 

( )  ( ) ( )   

          =  ( ) ( )  

1

Q q P Q C q
i i i i

n
q P q C q
i i i i

i

   

 


                                                                                          (3) 

The nature and complexity of the payoff function of each firm will be determined based on 

the level of complexity involved with the inverse demand function and cost function. So, we 

expand our formulation to more complex scenarios by adopting a tier wise increase in 

complexity from the all linear case to a more sophisticated duopoly game in subsequent 

Sections 2.1 to 2.4.  

2.1 Linear demand and linear cost function 

We start with a simple scenario by considering a Cournot model of a duopoly game with 

linear cost and payoff functions. Suppose we consider the linear inverse demand function as 

in (4).  

- Q   if  Q
P(Q) =

0        if  Q > 

 







                                                                                                           (4) 

The cost function of each firm as in (5). 

( )  ( )C q F c q
i i i i i

                                                                                                                 (5) 

Where  and ic  are positive constants and iF  is a fixed cost incurred to the thi firm, and ic  

represents unit price of the commodity of the thi  firm. So, based on these assumptions, payoff 

function of thi   firm becomes 

( , )  =  ( ) ( ) 
1 2

1

n
q q q P q F c q

i i i i i i
i

    


                                                                           (6) 

 In case of duopoly, the payoff functions of the individual firms become (7). 



6 

 

( , )  =  ( ) ( )
1 1 2 1 1 2 1 1 1

( , )  =  ( ) ( ) 
2 2 1 2 1 2 2 2 2

q q q P q q F c q

q q q P q q F c q





    

    
                                                                     (7) 

2.2 Non-linear demand function 

It is useful to consider non-linear market demand functions as these may better depict certain 

market situations. We adopt two standard scenarios from (Martin, 2002). They include 

exponential and hyperbolic demand functions. The generalized forms of both models are as 

shown in equations 8 and 9 respectively.  

1/

1( , ... )  
1 2

n
q

i i
iq q q q e

i n i i





 

 
  

 
                                                                           (8) 

Where
i

  ,
i

 ,  are positive constants. The above function delineates the demand function as 

an exponentially decreasing function which may be more representative of certain markets. 

The other scenario represents demand as hyperbolic in (9). 

( , ... )  ( )
1 2

1

A
iq q q q

i n in
k q
i i

i

  

 


                                                                                    (9) 

Where ,  A k
i i

 are positive constants. It is quite possible for markets to have a sinusoidal 

payoff functions presented in (Razi, Shahri, & Kian, 2007). The nonlinearity in the payoff 

function may lead to multiple Nash Equilibria. The payoff functions are defined as follows:                

( , )  21 sin( ) sin( )
1 1 2 1 1 1 2 2

q q q q q q q                                                             (10)

( , )  21 sin( ) sin( )
2 1 2 2 2 1 2 1

q q q q q q q                                                               (11) 

Thus through the above examples, we have considered a diversified range of scenarios with 

non-linear demand function. However, it is also useful to consider non-linearity in the cost 

function. 

2.3 Non-linear cost function 

Though there exists different kinds of non-linearity in the cost function, we have adopted a 

standard form of non-linear cost function from (Martin, 2002) defined below, so that it takes 

care of both economies and diseconomies of scale of production:  

2 3 4( )
,1 ,2 ,3 ,4 ,5

C q c c q c q c c c q
i i i i i i i i i i i

                                                          (12) 

where 0 ,  and 
,

c i j
i j

  .  

The payoff function with linear demand and non-linear cost is shown in equation (13) below: 
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2 3 4( , )  =  ( ) (  )
1 2 ,1 ,2 ,3 ,4 ,5

1

n
q q q P q c c q c q c q c q

i i i i i i i i i i i i
i

          


    (13) 

Equations (14) and (15) represent the scenario having non-linearity in both demand and cost 

functions: 

1/

1( , ,.. )  ( )
1 2

2 3 4( )
,1 ,2 ,3 ,4 ,5

n
q

i i
iq q q q e C q

i n i i i i

C q c c q c q c c c q
i i i i i i i i i i i





 


 

  
       


        


                                             (14) 

2 3 4( , ,.. )  (c )
1 2 ,1 ,2 ,3 ,4 ,5

1

iA q
iq q q c q c q c q c q

i n i i i i i i i i in
k q
i i

i




         

 


          (15)                                                                                                                 

It is easy to observe that the non-linear cost function mentioned in (15) can also take care of 

cost function of linear nature by making all the coefficient terms except the first order term 

equal to zero.  

2.4 Constrained functions 

In this section we consider capacity limitations on the production quantities of each firm. It is 

quite possible to have a discrete natured cost function with respect to quantity of production 

because the unit cost of a product can be lesser for bulk production. Hence the cost function 

can also take the forms of linear, nonlinear and simultaneously both. This discrete natured 

cost function can be taken care of mathematically by subjecting our payoff function to the set 

of constraints derived from putting limits on the production quantity and discrete cost of 

production of a commodity. Suppose if the discrete cost function is split into k intervals as 

shown in equation (18) and capacity of each firm is set as expressed in inequality (17), the 

generalized form of the model will be as given below: 

 Maximize:
1

  ( )   =  ( ) ( )       

1

K

k

n
i kQ q P q f C q

i i i k i i
i




  


  1,2...  firmthi n                (16) 

Subject to: 

       
cap

q Q i
i i
                                                                                                                    (17)                                                                                             
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1 1( )     if  0   

2 1 2( )     if    

3 2 3( )     if    ( )

.     

.

1( )     if    

i

C q q Q
i i i i

C q Q q Q
i i i i i

C q Q q QC q i i i i ii

k k kC q Q q Q
i i i i i

  



 

   





  


             i                                                          (18) 

11   if   Q  Q
            

0   otherwise

k kqi i i if i
k

  
 



                                                                      (19) 

 =1   
k

if i
k

                                                                                                                         (20)      

where cap

iQ  is production capacity of thi firm and inequality (17) ensures that the production 

quantity of each firm will be within its capacity. Equation (16) represents the fact that each 

individual firm tries to maximize its pay off within its feasible zone within the existing 

constraints frontier. Equation (18) allocates different costs for different ranges of production 

whose range is split into k intervals. The expression f
k

 in equation (19) can be regarded as an 

activating binary constant which enables the contribution of thk  interval of the cost function 

if q
i
falls in the thk  interval range. The expression ( )kC q

i i
   is the cost function 

corresponding to thk interval of the split which can be both linear and non-linear. Though the 

cost of production depends on the quantity that the firm produces, equation (20) allocates that 

particular cost corresponding to the production quantity.  

Another constraint that we introduce into the model is that of pollution limits. In fact, it is 

quite likely that different regulatory constraints exist to control the pollution level to ensure 

environmental protection from pollution prone commodities. Here we follow the concept of 

river basin pollution game (Haurie & Krawczyk, 1997) with a numerical example given by 

Mathiesen (2008), where thi producer emits pollution a
pi

and maximum  capacity b
i
 that is 

allowed on aggregate pollution. That restriction can be mathematically represented as in 

equations (21) and (22). Suppose there is a scenario in which the firms are located along a 

river and pollutants may be expelled into to the river, where they disperse. Emission ie is 

assumed to be proportional to production level. A regulatory authority monitors concentration 

of pollution at two downstream stations. Decay and transportation coefficient of pollution 

from thi  firm to control thp   is denoted by piu , then the regulator’s constraints can be 

portrayed as in (21) and (22): 
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  u e q b
pi i i i

i

               p                                                                                            (21)   

  a q b
pi i i

i

                      p                                                                                           (22)  

where b
i
, e

i
,u

pi
, a

pi
are assumed to be positive. This constrained model can approximate a 

variety of situations by adjusting the values of parameters as required. Though all our 

constraints are linear in nature in fact, they can be of any forms like linear, non-linear or a 

combination of both. Now it is quite challenging to solve these kinds of scenarios. This 

brings us the usefulness of an EAA in solving these complex models efficiently.  

3. Solution methodology 

In this section, we proceed by giving a brief description about traditional analytical approach 

and EAA to determine the Nash Equilibrium. The following illustrates the solution 

procedure: 

Definition-1: Given the strategy of other competing players in the game, optimal strategy or a 

best response of a particular firm is the strategy that maximizes its payoff function subject to 

existing constraints;  

Definition-2: The Best Response Function (BRF) can be defined as a function that takes the 

given strategies of competing players as an input and gives as an output the optimal strategy 

to be followed by it in order to maximize its payoff. Analytically, BRF of thi firm is an 

extrapolation of the optimal strategies for all firms across the range of strategies available in 

the game. 

3.1 Analytical approach 

The analytical approach is a two stage process. The first stage involves finding out the BRF 

of each firm by differentiating its payoff function with respect to its strategy and solving that 

first order derivative to get the zeroes of derivative function of each firm. Those zero 

functions have to be validated as its best response by checking the sign of double derivative. 

Second stage proceeds with solving the system of BRFs of the game to arrive at Nash 

Equilibrium. The advantages of this approach are that it is simple to understand and gives the 

exact Nash equilibrium. However, the analytical approach cannot be employed if any part of 

the payoff function is either discontinuous or non-differentiable up to second order. With 

regard to constrained games, ensuring the existence of Nash equilibrium is a major concern. 

To do that, the convexity or concavity of the payoff function of each firm has to be figured 

out before we find the Nash Equilibrium. Based on the nature of the solution space, there 

exist techniques to find out the solution in limited cases but these are complex and 

mathematically rigorous.     

3.2 Evolutionary algorithmic approach 

Unlike the analytical approach, EAA does not literally find the mathematical expressions of 

BRFs of each firm to find out Nash Equilibrium; rather it uses a graphical approach to do the 
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same. Broadly the technical framework of EAA consists of two stages. The first stage 

involves drawing the plots of BRFs of each firm using the evolutionary algorithm. The 

second stage involves the finding of intersection points of the system of BRF plots to give the 

Nash Equilibrium.  

Based on the beforehand approximate strategies of different players involved in the game, a 

wide range is defined that could cover all the strategy sets of every firm. To draw the BRF of 

a particular firm, the strategies of the remaining competing firms are fixed at N
p

number of 

different strategic points across the defined wide range. Then the best response of that 

particular firm at each point of the N
p

points is determined using the evolutionary algorithm. 

The EEA takes the strategies of competing firms at each point as input and gives the best 

response of corresponding firm finding maximum of its payoff function.  The set of all the 

best responses with respect to its competing firms are plotted at the N
p

different points 

across the wide range. By extrapolating all the optimal points we get the BRF of that 

particular firm. We repeat this procedure to determine the best reaction functions of the 

remaining firms. The intersection point of all the BRFs will turn out to be our required NE of 

the game.  

As the concept of extrapolation is used in the process of finding out Nash Equilibrium, it is 

important to have a sufficient number of points for drawing out the plot of BRF of each firm. 

However, to reduce the time of computation in the whole search for Nash Equilibrium in the 

strategy space, a two tier search is employed.  The first tier involves finding out the 

approximate vicinity of Nash Equilibrium in a wide range with a smaller number (  < 10)N
p

of points for extrapolation. Once the promising vicinity is established from this wide range 

search, a more detailed search is carried out in the promising region around Nash 

Equilibrium. To determine the promising space for exclusive search, the Self-Adaptive Range 

(SAR) technique is employed. Though the SAR technique is empirical in nature, 

experimental results show that SAR enables us to move very close to the exact equilibrium 

with less time and complexity of computation. The overall design of EAA is represented in 

the form of pseudo code in Table 1. 

<< Insert Table 1 >> 

3.3  Self Adapting Range (SAR) technique 

Based on the equilibrium that we get in the first wide range search, we estimate an upper 

boundary (UB) of the promising range of equilibrium using equations (23) and carry out a 

rigorous search by plotting BRFs with a larger number of points in the promising region to 

arrive at a point very close to the true Nash Equilibrium: 

UB of PR = maximum( ) 10NE
wr


                                                                               (23)                                                                               
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Where NE
wr

 is the set of strategies of all the firms at NE obtained during initial wide range 

search i.e.  , , .......
1 2 3

NE q q q q
wr n wr

     and   are the least positive integers which satisfies 

the inequalities mentioned in equations (24). 

10   maximum( )NE
wr


                                                                                                     (24) 

Where   is a positive rational number less than one.  The constant  can be termed as the 

tolerance random number that regulates the extra precision around the true Nash equilibrium 

in which we conduct the detailed search. Through rigorous simulation, it was ascertained that 
  should be set at values between 0.4 and 0.7 to obtain good results. If multiple Nash 

equilibria are found to exist during the wide range search, the upper bound of the promising 

region is set at the maximum value of strategies involved in the multiple Nash equilibriums 

with extra precision around it using equations 23 and 24. In general, most of the production 

firm will have non negative amounts of production units so the lower bound of promising 

region is assumed to be equal to zero.  To relax this assumption and model the games with 

negative values one can build equations similar to equations 23 and 24 and solve. Once the 

promising range is determined, incremental steps are used to split the promising range and 

construct 
N

p different strategic points. Exploring the promising range with incremental steps 

ensures uniformity in the search, which facilitates in building up a reliable BRF of each firm.  

Incremental Step =
 Upper Bound of Promising Range 

Number of points used for plotting BRF ( ) 

PR

N
p

                                      (25) 

During exhaustive search in the promising region, the number of points
( )N

p considered to 

plot a BRF is to be defined based on the complexity and sensitivity involved in the problem. 

In general, results show that keeping
N

p more than 20 gives us acceptable solutions. To 

illustrate the computational experiments presented in Section 5, we kept 
N

p = 20. If the 

game is sensitive to the precision involved in the values of Nash Equilibrium, we can increase 

N
p and compress the promising range near the Nash Equilibrium to conduct the search 

exhaustively around the true Nash Equilibrium. The same applies even if there exist multiple 

Nash Equilibria. 

4.   Technical description of PSOCP Algorithm 

This section provides the fundamental technical blocks that build up the PSOCP algorithm 

that is used as evolutionary algorithm for finding the N
p

number of best response points of 

each firm across the range of strategies available for the other competing firms. Those best 

response points are joined to get the BRF of corresponding firm. The best response is the 
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strategy that maximises the payoff function of the firm given the strategies of competing 

firms. Evolutionary algorithms find the optima of a payoff function using random search 

techniques in an iterative manner. Particle swarm optimization is one such algorithm. PSO 

tracks the optimal value with randomly generated solution vectors known as particles. The 

number of swarm particles that participate in the search is called the swarm size ( n ). The 

dimension ( )d or length of each particle in the swarm is generally equal to the number of 

variables involved in the payoff function. In Cournot games, payoff function of a firm is just 

a function of its production quantity or strategy. So the dimension ( )d of each particle is one. 

Each particle will be passed into the payoff function to get the value of payoff known as 

fitness value in artificial intelligence literature. So, the swarm is simply a n d matrix. The 

mechanism of tracking the optima of payoff function involves mathematical operations on the 

swarm.  

The swarm particles reach the vicinity of optimal value of a payoff function by effective 

exchange of information. To begin the search a set of n  swarm particles are randomly 

generated to cover the whole search space. Then mutual exchange of information takes place 

among the particles participating in the search regarding which particle has the best fitness 

value. The particle with the best fitness value out of the total swarm is called the global best 

position (GBP). Suppose that the thk particle out of n particles has got the best fitness 

position; then the remaining 1n  particles try to move towards the thk particle in an iterative 

manner. Exchange of information takes place among the swarm: during the movement some 

other particle may come across better fitness position than the thk particle; this information is 

again exchanged and search goes on. The value of the global best position found among the 

swarm either improves by iteration or remains same but does not degrade. After several 

iterations all the particles converges to a near optimal region of the fitness function after 

which there will be no significant improvement in the best fitness value of the function. The 

GBP of the converged swarm is taken as the true optimal value of the payoff function. 

Another key concept involved in this exploring mechanism is recollecting of information. 

Each particle will have the ability to remember the best fitness position that it has come 

across up until the current iteration; this is called the local best position (LBP). The LBP is 

different for different particles during movement. If a particle moving towards GBP 

encounters a worse position than its LBP, it stays at its LBP rather than make a move. This 

ability of remembering and exchanging of information eventually brings all the swarm 

particles close to the existing true global optima of a given payoff function. The efficiency of 

the algorithm both in terms of quality and quickness of arriving at global optima depends on 

how the particles exchange information and how quickly they move towards the promising 

region. There is however scope for improving the efficiency of the algorithm giving birth to 

different variants of evolutionary algorithm. This paper uses one such variant of swarm 

intelligence called particle swarm optimization with composite particles (PSOCP) by Liu et 

al. (2010). PSOCP has desirable advancements in the technical framework of the algorithm 

allowing efficient exploration of optimal values of payoff functions to take place.  
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4.1 Particle Swarm Optimization with Composite Particles (PSOCP) 

PSOCP is a variant of the evolutionary algorithm known as PSO (Kennedy & Eberhart, 1995) 

which works on swarm intelligence while tracking out global optima. It was initially 

developed by Liu et al. (2010) in order to tackle dynamic environments. The concept was 

inspired by the phenomenon of interaction of elementary members in each composite particle 

through a velocity-anisotropic reflection scheme (VAR) derived from the physics discipline. 

Compared to basic PSO, it uses the “concerted action” principle explained in Liu et al. (2010) 

while updating the elementary particles for next iteration but maintaining a similar procedure 

to that used for updating the pioneer particles of composite particles. This feature of integral 

movement of particles facilitates the swarm to share the beneficial information in a 

constructive manner which ensures that elementary particles move under correct guidance in 

accordance with the fittest particles. This enables the swarm to make an easy decision support 

system in the space to explore the promising region around exact optima while avoiding 

collision and velocity-slackening of elementary particles. A scattering operation is also 

adopted to ameliorate the fittest elementary particle available to a more desirable direction. 

When a composite particle generally converges, the scattering operation is triggered which 

enables the swarm avoid local entrapment. The VAR scheme helps the elementary particles 

to look for more extensive solution space.  

4.2 Position modulation function 

This function ensures that all variables should lie within their corresponding boundaries. The 

function basically takes the swarm to be modulated as its input and modifies that swarm 

according to the predefined limits and gives the modified swarm as the output. The approach 

is briefly depicted with the help of pseudo code in Table 2. 

<< Insert Table 2 here>> 

4.3 Composite Particles 

As per the procedure mentioned in Liu et al. (2010), we adopted the same method to 

construct the composite particles in this paper. A composite particle is defined as a three 

particle group with similar features. We consider the Euclidean distance between one particle 

and another so that each group forms a near equilateral triangle. A “worst is first” criteria is 

utilized in constructing the composite particles. The procedure starts by arranging all the 

particles in ascending order of their fitness and the worst particle is selected as a first particle 

in the composite particle being constructed and the remaining two particles are selected based 

on Euclidean distance which are close to the weakest particle in that composite particle. This 

procedure iterates until all possible composite particles are constructed. The particles that 

remain unconstructed in the end are named as independent particles. These will ultimately 

turn out to be best fit particles. Composite particles usually handle two major concerns. The 

primary concern is to develop a method which would increase the interaction among 

elementary particles in such a way that more promising search space would be explored. A 

secondary concern is that it facilitates VAR and scattering operations on the composite 

particles being constructed from which we can improve the performance of the algorithm. 

The pseudo code shown in Table 3 depicts the procedure adopted for construction of 

composite particles.  
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<< Insert Table 3 >> 

4.4 Scattering and VAR operations 

 To ensure local diversity within each composite particle, we adopted scattering and VAR 

operations which facilitates in avoiding local entrapment of our heuristic, a major drawback 

of meta heuristics in computational intelligence literature. The procedure proceeds by 

utilising the concept of convergence. A composite particle is said to be converged when the 

Euclidean distance between the worst particle and the other particles inside it becomes less 

than the threshold . A scattering operation is performed whenever the convergence criteria 

are met with in the composite particle. If the position of the elementary particle having the 

best fitness value in the composite particle is represented by F  and other two non-pioneer 

particles denoted by 1E  and 2E , then the particle with best fitness F  scatters along the 

direction 1E F  and 2E F  in order to replace 1E and 2E . Now the new composite particle 

contributes to the point 1,F S  and 2S  as shown in Fig. 1. 

 

<< Insert Fig. 1 >> 

 

A velocity anisotropic reflective (VAR) operation is proposed along with a scattering 

operation to make sure that the worst particles move in an improved direction towards a 

promising region in the search space. This enhances the exploration and better tracking of 

global optima in the search space. The procedure involves two sub steps with an adoptive 

step size and pioneer particle selection as defined in Liu et al., (2010). Both of these 

operations are proposed for better tracking of optima in dynamic environments. The pseudo 

code given in Table 4 depicts the schema for carrying out scattering and VAR operations. 

<< Insert Table 4 >> 

4.5 Overview of PSOCP for optimizing payoff functions    

The innovative qualities of the algorithm - construction of composite particles, scattering and 

VAR - have been adopted to design a variant of PSOCP to tackle complex game theoretic 

scenarios smoothly. The algorithm begins with random initialization of the swarm and its 

initial velocity and runs in an iterative manner until the termination criterion is met. Each 

iteration involves tracking of the personal best for each pioneer particle, the global best 

particle, construction of composite particles, scattering operation, VAR scheme operation and 

updating the swarm for next iteration. At the end of each iteration the position of each 

updated particle is checked to ensure that it lies within its predefined boundaries using the 

function position modulation discussed in Section 4.2. Eventually the algorithm arrives at a 

near optimal solution of the fitness function which we are trying to optimize. Hence this 

algorithm can be used to predict the optimal decisions or best responses of all the firms 

corresponding to their pay off functions. An overview of the algorithm is presented in the 

form of pseudo code given in Table 5. 

<< Insert Table 5 >> 
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4.6 Handling constrained games 

Though there are many ways to address constrained scenarios, we have adopted a penalty 

function method to overcome these problems in EAA. The first reason is to do with the 

randomness involved in generating and updating the solutions in our evolutionary algorithm, 

which may not facilitate us in giving a feasible swarm in every iteration. The second reason 

has to do with the ease with which the penalty function approach handles complex 

constraints. A penalty function is constructed by penalizing each constraint with an 

appropriately large number in proportion to its violation and annexing all those penalty 

values as one function. Then this penalty function will be appended to the original objective 

function as a negative effect. As our algorithm tries to rehabilitate and improve the payoff 

function in every iteration this consolidated objective function ensures reduction in violation 

of all the constraints in later iterations, as violation of any constraint shows a negative effect 

in the payoff function. This enables us to end up with a feasible solution after substantial 

number of iterations whose penalty function value falls to zero due to continuous reduction in 

violation. So, ultimately this makes a clear path for our model to return the best response 

strategy of each firm at every stage by contemplating all the constraints directly without any 

further attention. Several approaches in constructing penalty function are defined in Yeniay 

(2005). Through this technique we curtail the difficulty concealed with handling all kinds of 

constraints that exist in the problem. Hence in EAA, we directly plot the points that are 

feasible with respect to all the constraints that frontiers the space and plot the required BRF. 

Hence penalty function approach is adopted to overcome constrained scenarios, which is a 

conventional behaviour of general competitive market.  

4.7 Sensitivity analysis and optimal parameter setting  

As we are using an evolutionary heuristic, it is necessary to look for the appropriate settings 

of the prime parameters that amend the efficiency of the algorithm in finding the better 

optimal solutions with less complexity in computation. The crucial parameters involved in 

our algorithm that may affect the dominant properties of the algorithm are inertia weight ( )w , 

accelerating coefficients ( ,  )
1 2

k k , diversification parameter used in VAR operation ( )stepR , 

stretching parameters min, max(S S )step step , and the threshold Euclidean distance limit ( )  

involved in the scattering operation. It is imperative to fix optimal settings of the parameters, 

which vary from situation to situation. As we deal with diversified scenarios, these parameter 

settings cannot be stated as being invariably the best. Hence in particular with solving the 

game theory models, we present the optimal data set of the above mentioned parameters 

obtained by conducting 30 repeated runs for each numerical example that is considered to 

represent the scenarios modelled above. Few parameter settings are adopted from the 

conclusions drawn with the numerous experiments presented in Liu et al. (2010).  

We make an observation that we are getting 
2

k >>
1

k  at the optimal parameter setting 

representing the fact that it facilitates the PSO variants to undergo a biased search towards 

global optima than local optima. This may also endanger the fact that search may miss a 

better optimal solution which is encountered by the diversification operations adopted in our 

heuristic. The important parameter that determines the efficiency of the algorithm in different 
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scenarios is the stopping criteria to be employed while figuring out the optimal points for 

tracing out each BRF. This is exercised in two ways, first one being limiting the number of 

iterations that algorithm runs and the other is by predefining a threshold converging distance 

beyond which the algorithm does not search. That threshold distance depends on the accuracy 

in the quality of solutions needed and also on the range of fitness values. Here we employed 

the first one by defining the constraining maximum number of iterations ( )E   as 100 which is 

verified from the 30 repeated experiments on each scenario. In fact attention should be paid 

here when we come across a complex situation if it requires more iterations than in the case 

of constrained optimization. Table 6 shows suitable range of parameters at which our test 

instances have been solved. 

<< Insert Table 6 >> 

 

5.  Computational experiments 

The discussion is divided into two sections. The first section presents the optimal parameter 

settings of the algorithm at which the algorithm is sufficiently robust and efficient to tackle 

complex payoff functions. Secondly, we present several, increasingly complex, numerical 

examples corresponding to the models presented in Sections 2.1 to 2.4. The solutions 

obtained through EAA are compared with those gained from an analytical approach to show 

the robustness, ease and efficiency of EAA in attaining the Nash Equilibrium, even in games 

with high levels of complexity. 

5. 1 Linear demand and cost 

If we consider a duopoly case in which linear inverse demand function of each firm as 

( , ) 3 0.01 ( )
1 2 1 2

P q q q q     and cost function as defined in Section 2.1 with the 

parameters as ( , c ) (0.10,0.01)  ( , c ) (0.12,0.05)
1 1 2 2

F and F  then payoff function of both 

firms becomes 

( , )    (3 0.01( )) (0.10 0.01 ) 
1 1 2 1 1 2 1

( , )    (3 0.01( )) (0.12 0.05 ) 
2 1 2 2 1 2 2

q q q q q q

q q q q q q





      

      
  

The above data is extracted from the data referred to in (Mathiesen, 2008). Results for 

Mathiesen’s problem 5.2 are presented in Table 7 and the BRFs of both firms and NE is 

shown in figure 2. The units for best strategy of all the firms presented in all the subsequent 

tables presented throughout Section 5 are the number of units of production quantities to be 

produced by the corresponding firm. wrNE  in the all the tables presented throughout Section 

5 indicates initial Nash Equilibrium found in wide range search in EAA.  

<< Insert Fig. 2 >> 

<< Insert Table 7 >> 
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Hence from the above results we can observe that the relative error that we get through EAA 

is negligible at less than 0.05 per cent. 

5.2 Non-linear demand  

In this section, we present numerical examples corresponding to each scenario discussed in 

Section 2.2. The first scenario refers to exponential inverse demand function (Martin, 2002). 

It considers a duopoly situation whose payoff functions are of the forms shown in equation 

(8) with the parameters 100, 10 and =2
1 2 1 2

        . The payoff function of each 

firm becomes:  

0.5
1

10 1 100
1 1

n
q
i

iq e

 
   

 
      

0.5
1

10 1 100
2 2

n
q
i

iq e

 
   

 
      

The solution for this situation is presented in Table 8 and Fig. 3. 

<< Insert Fig. 3>> 

<< Insert Table 8>> 

5.3 Non-linear demand and non-linear cost functions 

In this case, a situation has been taken up in which both inverse demand function and cost 

functions having non-linear natures. In this sense we provide a numerical replica for the 

model that is being described in Section 2.3 in which the demand functions takes a hyperbolic 

nature with respect to quantity. This following example is adopted from (Martin, 2002), 

Payoff function of corresponding firm as shown below.  

1450 2 3 4( , )  (430 230 61.25 6.25 0.25 )
1 1 2 1 1 1 12

2

1

q
q q q q q q

q
i

i




         

 


  

2450 2 3 4( , )  (430 230 61.25 6.25 0.25 )
2 1 2 2 2 2 22

2

1

q
q q q q q q

q
i

i




         

 


  

Table 10 and figure 4 shows the computational results for the above the scenario. We have 

presented more elaborate results than Martin (2002) comprising the different optimal 

responses found by PSOCP in EAA which are used in plotting BRFs of each firm in Table 

10.  

<< Insert Fig. 4 >> 
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<< Insert Table 10 >> 

Another non-linear benchmark scenario having multiple Nash equilibriums involving 

sinusoidal payoff functions (Razi et al., 2007) is presented. The respective payoff functions 

for that duopoly scenario are as shown below  

( , )  21 sin( ) sin( )
1 1 2 1 1 1 2 2

q q q q q q q                                                            

( , )  21 sin( ) sin( )
2 1 2 2 2 1 2 1

q q q q q q q           

Fig. 5 and Table 9 show the results of that bench mark scenario depicting all the possible 

multiple equilibrium (NE). This example reflects the resilience of the EEA algorithm, 

achieving solutions to complex games smoothly. 

<< Insert Fig. 5 >> 

<< Insert Table 9 >> 

 

5.4 Constrained functions: Production and Environmental 

In this case, a constrained scenario has been considered with linear payoff functions subject 

to constraints that regulate the quantity of production by each firm and environmental 

pollution levels. The constraints pertain to the production capacities of firms and 

environmental regulations that regulate emission of pollutants by both firms. The 

environmental pollution constraints are as described in Section 2.4.  

Pay off functions of individual firm: 

( , )  =  (3 0.01( )) (0.10 0.01 ) 
1 1 2 1 1 2 1

( , )  =  (3 0.01( )) (0.12 0.05 ) 
2 1 2 2 1 2 2

q q q q q q

q q q q q q





     

     
  

Subject to: 

1

2

20
  Production Capacity Constraints

10

q

q

 


 
  

1 2

1 2

1 2

1 2

0.5 6.5 0.25 5   100

0.5 4.583 0.25 6.250   100
 Environmental Pollution Constraints

3.25 1.25   100

2.2915 1.5625   100

q q

q q

q q

q q

      

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

    
    

  

1

2

0
 Non Zero Constraints

0

q

q

 


 
  

Results for the above have been presented in three stages with respect to constraints. The first 

stage deals with effect of production capacity constraints, second stage deals with effect of 
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pollution constraints and the last stage deals with combined effect on NE. The following 

figures 11, 12, 13 and tables 6, 7, 8 shows the results in sequence of stages. 

<< Insert Fig. 6 >> 

<< Insert Fig. 7 >> 

<< Insert Fig. 8 >> 

 

<< Insert Table 11 >> 

<< Insert Table 12 >> 

<< Insert Table 13 >> 

Another constrained scenario can be built by considering the nonlinear payoff functions for 

each firm subject to the same set of constraints mentioned in Section 5.5. Consider the payoff 

functions with hyperbolic demand function and a polynomial cost function presented in 

Section 5.4 subject to the same constraints presented in Section 5.5. The following figure 

carries the results of this constrained non-linear scenario. We can observe that there is 

leftward shift in the Nash Equilibrium when we move from the unconstrained scenario in 

Section 5.4 to current constrained scenario. There does not exist multiple equilibrium in 

constrained scenario compared to unconstrained scenario. In the figure 9, BRF-1, BRF-2 

represents best response functions in constrained scenario and BRF-1UC, BRF-2UC 

represents best response curves of unconstrained scenario. NE-UC indicates Nash 

equilibrium in the unconstrained scenario, NE-C indicates Nash equilibrium in the 

constrained scenario. 

<< Insert Fig. 9>> 

 

A comparison of the above test have been made with the possible exact solutions obtained 

through traditional analytical approach and these are presented in Table 14. Except scenario 1 

and 2, it is difficult to find analytical solutions for the remaining scenarios. Hence no 

comparison could be done for those scenarios. In fact this shows the value of the proposed 

EAA as it can handle without difficulty complicated scenarios that cannot be solved using an 

analytical approach.   

<< Insert Table 14 >> 

 

6. Conclusion 

This paper used an evolutionary algorithmic approach to determine the Nash equilibrium for 

situations of duopolistic competition involving nonlinearities, constraints and discrete 

functions. This is a novel way of determining the Nash equilibrium and a novel application of 

particle swarm optimization. The model was validated by comparing the results found using 
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the composite particle swarm approach to results determined analytically for a variety of 

different cases. Closed form analytical solutions however can be found only for industrial 

competition problems specified for relatively simple, usually linear, formats. The power of 

the composite particle swarm approach is that solutions for the Nash equilibrium can be 

found for complex non-linear situations. Examples of non-linear competitive situations 

abound in the real world, for example where inverse demand functions are concave rather 

than linear, where firm costs demonstrate economies or diseconomies of scale, or where 

production capacity is constrained or formulated in discrete bands. A limitation of this 

research is that EAA has been tested using a limited number of cases and Nash equilibria 

determined only for pure strategies. Further research work may be carried out to extend the 

variety of cases examined, to consider more realistic competitive situations, and to determine 

Nash equilibrium in mixed strategies. 
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