683 research outputs found

    Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    Get PDF
    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains

    Secure Two-Way Transmission via Wireless-Powered Untrusted Relay and External Jammer

    Get PDF
    In this paper, we propose a two-way secure communication scheme where two transceivers exchange confidential messages via a wireless powered untrusted amplify-and-forward (AF) relay in the presence of an external jammer. We take into account both friendly jamming (FJ) and Gaussian noise jamming (GNJ) scenarios. Based on the time switching (TS) architecture at the relay, the data transmission is done in three phases. In the first phase, both the energy-starved nodes, the untrustworthy relay and the jammer, are charged by non-information radio frequency (RF) signals from the sources. In the second phase, the two sources send their information signals and concurrently, the jammer transmits artificial noise to confuse the curious relay. Finally, the third phase is dedicated to forward a scaled version of the received signal from the relay to the sources. For the proposed secure transmission schemes, we derive new closed-form lower-bound expressions for the ergodic secrecy sum rate (ESSR) in the high signal-to-noise ratio (SNR) regime. We further analyze the asymptotic ESSR to determine the key parameters; the high SNR slope and the high SNR power offset of the jamming based scenarios. To highlight the performance advantage of the proposed FJ, we also examine the scenario of without jamming (WoJ). Finally, numerical examples and discussions are provided to acquire some engineering insights, and to demonstrate the impacts of different system parameters on the secrecy performance of the considered communication scenarios. The numerical results illustrate that the proposed FJ significantly outperforms the traditional one-way communication and the Constellation rotation approach, as well as our proposed benchmarks, the two-way WoJ and GNJ scenarios.Comment: 14 pages, 6 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Ultrasound-promoted synthesis of novel dihydropyrido[2,3-d:5,6- d`]dipyrimidine derivatives

    Get PDF
    An efficient synthesis of dihydropyrido[2,3-d:5,6-d`]pyrimidine derivatives was developed via one-pot three-component reaction of 6-amino-2-(alkylthio)-pyrimidine-4(3H)one and aryl aldehydes in the mixed solvent of glacial acetic acid and DMF (1:1, v:v) under ultrasonic irradiation. In this protocol novel fused dihydropyrido[2,3-d]pyrimidines were synthesized in high yields (80-97%) and lower reaction times (5-25 min)

    An Analysis of the Radiometric Quality of Small Unmanned Aircraft System Imagery

    Get PDF
    In recent years, significant advancements have been made in both sensor technology and small Unmanned Aircraft Systems (sUAS). Improved sensor technology has provided users with cheaper, lighter, and higher resolution imaging tools, while new sUAS platforms have become cheaper, more stable and easier to navigate both manually and programmatically. These enhancements have provided remote sensing solutions for both commercial and research applications that were previously unachievable. However, this has provided non-scientific practitioners with access to technology and techniques previously only available to remote sensing professionals, sometimes leading to improper diagnoses and results. The work accomplished in this dissertation demonstrates the impact of proper calibration and reflectance correction on the radiometric quality of sUAS imagery. The first part of this research conducts an in-depth investigation into a proposed technique for radiance-to-reflectance conversion. Previous techniques utilized reflectance conversion panels in-scene, which, while providing accurate results, required extensive time in the field to position the panels as well as measure them. We have positioned sensors on board the sUAS to record the downwelling irradiance which then can be used to produce reflectance imagery without the use of these reflectance conversion panels. The second part of this research characterizes and calibrates a MicaSense RedEdge-3, a multispectral imaging sensor. This particular sensor comes pre-loaded with metadata values, which are never recalibrated, for dark level bias, vignette and row-gradient correction and radiometric calibration. This characterization and calibration studies were accomplished to demonstrate the importance of recalibration of any sensors over a period of time. In addition, an error propagation was performed to detect the highest contributors of error in the production of radiance and reflectance imagery. Finally, a study of the inherent reflectance variability of vegetation was performed. In other words, this study attempts to determine how accurate the digital count to radiance calibration and the radiance to reflectance conversion has to be. Can we lower our accuracy standards for radiance and reflectance imagery, because the target itself is too variable to measure? For this study, six Coneflower plants were analyzed, as a surrogate for other cash crops, under different illumination conditions, at different times of the day, and at different ground sample distances (GSDs)

    Standardization of GHQ-28 Inventory on the Students of Azerbaijan Province of Iran

    Get PDF
    AbstractThe aim of this research was to investigate of the psychometric characteristics of GHQ-28 inventory in the base of classical model for use in the various situations. The subjects of this research were 773 students that selected by cluster random sampling from Azerbaijan universities of Iran. The results of this research indicated that GHQ-28's scales have high correlations with SCL- 90-R, and also total scores of GHQ-28 have a high correlation with GSI of SCL-90-R. The results suggest that GHQ-28 and four subscales of this inventory have a high reliability factor analysis indicated that this inventory, after omission of 14 items, was saturated with 4 factors. At least between the scores male and female students, with the exception of Somatization scale, in the other three scales significant differences were found. But with the use of 0-0-1-1 scoring method, only in the social dysfunction scale a significant difference was found

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    Ā© 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumersā€™ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the productā€™s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customersā€™ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio
    • ā€¦
    corecore