271 research outputs found
Spontaneous thermal runaway as an ultimate failure mechanism of materials
The first theoretical estimate of the shear strength of a perfect crystal was
given by Frenkel [Z. Phys. 37, 572 (1926)]. He assumed that as slip occurred,
two rigid atomic rows in the crystal would move over each other along a slip
plane. Based on this simple model, Frenkel derived the ultimate shear strength
to be about one tenth of the shear modulus. Here we present a theoretical study
showing that catastrophic material failure may occur below Frenkel's ultimate
limit as a result of thermal runaway. We demonstrate that the condition for
thermal runaway to occur is controlled by only two dimensionless variables and,
based on the thermal runaway failure mechanism, we calculate the maximum shear
strength of viscoelastic materials. Moreover, during the thermal
runaway process, the magnitude of strain and temperature progressively localize
in space producing a narrow region of highly deformed material, i.e. a shear
band. We then demonstrate the relevance of this new concept for material
failure known to occur at scales ranging from nanometers to kilometers.Comment: 4 pages, 3 figures. Eq. (6) and Fig. 2a corrected; added references;
improved quality of figure
Relationship of Mean Stress, Volumetric Strain and Dynamic Loads in Soil
The changes in soil consolidation resulting from externally applied forces and the effect of these changes on the physical properties of the soil have been studied by many individuals. Unfortunately their results have not produced an adequate agricultural soil mechanics. The development of soil stress-strain relationships which will permit the prediction of the changes in the state of compaction caused by various implements and power units will be a major contribution toward controlling soil compaction
Recommended from our members
Word frequency and trends in the development of French vocabulary in lower intermediate students during Year 12 in English schools
Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids
We use the shear transformation zone (STZ) theory of dynamic plasticity to
study the necking instability in a two-dimensional strip of amorphous solid.
Our Eulerian description of large-scale deformation allows us to follow the
instability far into the nonlinear regime. We find a strong rate dependence;
the higher the applied strain rate, the further the strip extends before the
onset of instability. The material hardens outside the necking region, but the
description of plastic flow within the neck is distinctly different from that
of conventional time-independent theories of plasticity.Comment: 4 pages, 3 figures (eps), revtex4, added references, changed and
added content, resubmitted to PR
Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia
Using a magneto-mechanical solid-fluid numerical model for permanently magnetic artificial cilia, we show that the metachronal motion of symmetrically beating cilia establishes a net pressure gradient in the direction of the metachronal wave, which creates a unidirectional flow. The flow generated is characterised as a function of the cilia spacing, the length of the metachronal wave, and a dimensionless parameter that characterises the relative importance of the viscous forces over the elastic forces in the cilia
Spontaneous dissipation of elastic energy by self-localizing thermal runaway
Thermal runaway instability induced by material softening due to shear
heating represents a potential mechanism for mechanical failure of viscoelastic
solids. In this work we present a model based on a continuum formulation of a
viscoelastic material with Arrhenius dependence of viscosity on temperature,
and investigate the behavior of the thermal runaway phenomenon by analytical
and numerical methods. Approximate analytical descriptions of the problem
reveal that onset of thermal runaway instability is controlled by only two
dimensionless combinations of physical parameters. Numerical simulations of the
model independently verify these analytical results and allow a quantitative
examination of the complete time evolutions of the shear stress and the spatial
distributions of temperature and displacement during runaway instability. Thus
we find that thermal runaway processes may well develop under nonadiabatic
conditions. Moreover, nonadiabaticity of the unstable runaway mode leads to
continuous and extreme localization of the strain and temperature profiles in
space, demonstrating that the thermal runaway process can cause shear banding.
Examples of time evolutions of the spatial distribution of the shear
displacement between the interior of the shear band and the essentially
nondeforming material outside are presented. Finally, a simple relation between
evolution of shear stress, displacement, shear-band width and temperature rise
during runaway instability is given.Comment: 16 pages, 7 figures. Extended conclusion; added reference
Recommended from our members
Operationalising and measuring language dominance
The paper offers a new way to measure language ability in bilinguals, based on measures of lexical richness. The validity of proposed approach is tested in a variety of ways
A large-strain radial consolidation theory for soft clays improved by vertical drains
A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is deposited at a low initial density, a significant amount of deformation or surface settlement occurs. Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing equation based on Gibson's large-strain theory and Barron's free-strain theory incorporating the radial and vertical flows, the weight of the soil, variable hydraulic conductivity and compressibility during the consolidation process is therefore presented
Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation
Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear–stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs) in the flow affect platelet dynamics, which motivated the present study of a possible correlation between VS and ILT formation in AAAs. VSs educed by the λ2-method using computational fluid dynamics simulations of the backward-facing step problem, normal aorta, fusiform AAA and saccular AAA were investigated. Patient-specific luminal geometries were reconstructed from computed tomography scans, and Newtonian and Carreau–Yasuda models were used to capture salient rheological features of blood flow. Particularly in complex flow domains, results depended on the constitutive model. VSs developed all along the normal aorta, showing that a clear correlation between VSs and high wall shear stress (WSS) existed, and that VSs started to break up during late systole. In contrast, in the fusiform AAA, large VSs developed at sites of tortuous geometry and high WSS, occupying the entire lumen, and lasting over the entire cardiac cycle. Downward motion of VSs in the AAA was in the range of a few centimetres per cardiac cycle, and with a VS burst at that location, the release (from VSs) of shear-stress-activated platelets and their deposition to the wall was within the lower part of the diseased artery, i.e. where the thickest ILT layer is typically observed. In the saccular AAA, only one VS was found near the healthy portion of the aorta, while in the aneurysmatic bulge, no VSs occurred. We present a fluid-dynamics-motivated mechanism for platelet activation, convection and deposition in AAAs that has the potential of improving our current understanding of the pathophysiology of fluid-driven ILT growth
- …