30 research outputs found

    Wireless Health Data Exchange for Home Healthcare Monitoring Systems

    Get PDF
    Ubiquitous home healthcare systems have been playing an increasingly significant role in the treatment and management of chronic diseases, such as diabetes and hypertension, but progress has been hampered by the lack of standardization in the exchange of medical health care information. In an effort to establish standardization, this paper proposes a home healthcare monitoring system data exchange scheme between the HL7 standard and the IEEE1451 standard. IEEE1451 is a standard for special sensor networks, such as industrial control and smart homes, and defines a suite of interfaces that communicate among heterogeneous networks. HL7 is the standard for medical information exchange among medical organizations and medical personnel. While it provides a flexible data exchange in health care domains, it does not provide for data exchange with sensors. Thus, it is necessary to develop a data exchange schema to convert data between the HL7 and the IEEE1451 standard. This paper proposes a schema that can exchange data between HL7 devices and the monitoring device, and conforms to the IEEE 1451 standard. The experimental results and conclusions of this approach are presented and show the feasibility of the proposed exchange schema

    A Monitoring and Advisory System for Diabetes Patient Management Using a Rule-Based Method and KNN

    Get PDF
    Diabetes is difficult to control and it is important to manage the diabetic’s blood sugar level and prevent the associated complications by appropriate diabetic treatment. This paper proposes a system that can provide appropriate management for diabetes patients, according to their blood sugar level. The system is designed to send the information about the blood sugar levels, blood pressure, food consumption, exercise, etc., of diabetes patients, and manage the treatment by recommending and monitoring food consumption, physical activity, insulin dosage, etc., so that the patient can better manage their condition. The system is based on rules and the K Nearest Neighbor (KNN) classifier algorithm, to obtain the optimum treatment recommendation. Also, a monitoring system for diabetes patients is implemented using Web Services and Personal Digital Assistant (PDA) programming

    Design and Implementation of an Intranet Security and Access Control System in Ubi-Com

    Get PDF
    Currently, most enterprise intranet systems process user information for security and access authentication purposes. However, this information is often captured by unauthorized users who may edit, modify, delete or otherwise corrupt this data. In addition, corruption can result from inaccurate communication protocols in the web browser. Therefore, a method is needed to prevent unauthorized or erroneous access and modification of data through the intranet. This paper proposes an efficient security procedure that incorporates a new model that allows flexible web security access control in securing information over the intranet in UC. The proposed web security access control system improves the intranet data and access security by using encryption and decryption techniques. It further improves the security access control by providing authentication corresponding to different security page levels relevant to public ownership and information sensitivity between different enterprise departments. This approach reduces processing time and prevents information leakage and corruption caused by mistakes that occur as a result of communication protocol errors between client PC's or mail security methods

    An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm

    Get PDF
    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements

    Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Get PDF
    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks

    Photovoltaics Plant Fault Detection Using Deep Learning Techniques

    No full text
    Solar energy is the fastest-growing clean and sustainable energy source, outperforming other forms of energy generation. Usually, solar panels are low maintenance and do not require permanent service. However, plenty of problems can result in a production loss of up to ~20% since a failed panel will impact the generation of a whole array. High-quality and timely maintenance of the power plant will reduce the cost of its repair and, most importantly, increase the life of the power plant and the total generation of electricity. Manual monitoring of panels is costly and time-consuming on large solar plantations; moreover, solar plantations located distantly are more complicated for humans to access. This paper presents deep learning-based photovoltaics fault detection techniques using thermal images obtained from an unmanned aerial vehicle (UAV) equipped with infrared sensors. We implemented the three most accurate segmentation models to detect defective panels on large solar plantations. The models employed in this work are DeepLabV3+, Feature Pyramid Network (FPN) and U-Net with different encoder architectures. The obtained results revealed intersection over union (IoU) of 79%, 85%, 86%, and dice coefficients of 87%, 92%, 94% for DeepLabV3+, FPN, and U-Net, respectively. The implemented models showed efficient performance and proved effective to resolve these challenges

    Photovoltaics Plant Fault Detection Using Deep Learning Techniques

    No full text
    Solar energy is the fastest-growing clean and sustainable energy source, outperforming other forms of energy generation. Usually, solar panels are low maintenance and do not require permanent service. However, plenty of problems can result in a production loss of up to ~20% since a failed panel will impact the generation of a whole array. High-quality and timely maintenance of the power plant will reduce the cost of its repair and, most importantly, increase the life of the power plant and the total generation of electricity. Manual monitoring of panels is costly and time-consuming on large solar plantations; moreover, solar plantations located distantly are more complicated for humans to access. This paper presents deep learning-based photovoltaics fault detection techniques using thermal images obtained from an unmanned aerial vehicle (UAV) equipped with infrared sensors. We implemented the three most accurate segmentation models to detect defective panels on large solar plantations. The models employed in this work are DeepLabV3+, Feature Pyramid Network (FPN) and U-Net with different encoder architectures. The obtained results revealed intersection over union (IoU) of 79%, 85%, 86%, and dice coefficients of 87%, 92%, 94% for DeepLabV3+, FPN, and U-Net, respectively. The implemented models showed efficient performance and proved effective to resolve these challenges
    corecore