138 research outputs found

    Oblique Half-Solitons and their Generation in Exciton-Polariton Condensates

    Full text link
    We describe oblique half-solitons, a new type of topological defects in a two dimensional spinor Bose Einstein condensate. A realistic protocol based on the optical spin Hall effect is proposed toward their generation within an exciton-polariton system.Comment: 4 Pages, 3 Figure

    Effect of TE-TM Splitting on the topological stability of half-vortices in exciton-polariton condensates

    Full text link
    Half-vortices have been recently shown to be the elementary topological defects supported by a spinor cavity exciton-polaritons condensates with spin anisotropic interactions (Y. G. Rubo, Phys. Rev. Lett. 99, 106401 (2007)). A half vortex is composed by an integer vortex for one circular component of the condensate, whereas the other component remain static. We analyze theoretically the effect of the splitting between TE and TM polarized eigen modes on the structure of the vortices in this system. For TE and TM modes, the polarization states depend on the direction of propagations of particles and imposes some well defined phase relation between the two circular component. As a result elementary topogical defects in this system are no more half vortices but integer vortices correspond to an integer vortex for both circular components of the condensate. The intrinsic life time of half vortices is given and the texture of a few vortex states is analyzed.Comment: 9 pages, 5 figure

    Entangled photons from a strongly coupled quantum dot-cavity system

    Full text link
    A quantum dot strongly coupled to a photonic crystal has been recently proposed as a source of entangled photon pairs [R. Johne et al., Phys. Rev. Lett. 100, 240404 (2008)]. The biexction decay via intermediate polariton states can be used to overcome the natural splitting between the exciton states coupled to the horizontally and vertically polarized light modes, so that high degrees of entanglement can be expected. We investigate theoretically the features of realistic dot-cavity systems, including the effect of the different oscillator strength of excitons resonances coupled to the different polarizations of light. We show that in this case, an independent adjustment of the cavity resonances is needed in order to keep a high entanglement degree. We also consider the case when the biexciton-exciton transition is also strongly coupled to a cavity mode. We show that a very fast emission rate can be achieved allowing the repetition rates in the THz range. Such fast emission should however be paid for by a very complex tuning of the many strongly coupled resonances involved and by a loss of quantum efficiency. Altogether a strongly coupled dot-cavity system seems to be very promising as a source of entangled photon pairs.Comment: 7 pages, 5 figure

    Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons

    Full text link
    Two-dimensional lattices of coupled micropillars etched in a planar semiconductor microcavity offer a workbench to engineer the band structure of polaritons. We report experimental studies of honeycomb lattices where the polariton low-energy dispersion is analogous to that of electrons in graphene. Using energy-resolved photoluminescence we directly observe Dirac cones, around which the dynamics of polaritons is described by the Dirac equation for massless particles. At higher energies, we observe p orbital bands, one of them with the nondispersive character of a flatband. The realization of this structure which holds massless, massive and infinitely massive particles opens the route towards studies of the interplay of dispersion, interactions, and frustration in a novel and controlled environment

    Electrically generated entangled light for optical quantum information applications

    Get PDF
    Les boites quantiques de semiconducteurs représentent une voie attractive pour la réalisation de sources de photon efficaces pour le transfert quantique de l information, avec un fort potentiel de miniaturisation et d intégration. Dans ce travail, les paires de photons intriqués sont générées via le déclin radiatif de bi-excitons, à partir de boite quantiques d InAs auto-assemblées placé dans une jonction p-i-n. Dans une première série d expérience d interférence à deux photons, nous avons démontré des corrélations de polarisation non classiques et la capacité de deux photons à interférer. L intrication a été démontrée avec une fidélité de 0.87+-0.04, et une visibilité des interférences de 0.60+-0.05. Nous avons ensuite réalisé le premier téléporteur injecté électriquement dans un circuit à fibre monomode. Une fidélité moyenne de 0.704+-0.016 a été mesurée pour 6 états distribués symétriquement sur la sphère de Poincaré, ce qui supérieur à la limite classique de 2/3 et prouve la téléportation. Un dispositif modifié de téléportation permettant d injecter des photons à partir d un laser continu indépendant a été développé. L interférence à deux photons entre sources différentes a été démontrée et des battements quantiques observés. La téléportation quantique des états de polarisation portés par les photons a été obtenue avec une fidélité moyenne 0.76+-0.012. Le contrôle du spin des charges confinés dans les nanostructures tels que les boites quantiques requiert une compréhension profonde de la physique des matériaux constituant, y compris au niveau nucléaire. Ainsi, nous avons démontré le contrôle électrique de l interaction hyperfine entre les spins électroniques et nucléaires en utilisant un composant à charge ajustable. La modélisation suggère que le mécanisme est contrôlé par le temps de corrélation hyperfine de l électron et le temps de dépolarisation du noyau.Semiconductor quantum dots offer an attractive route towards efficient and high-quality photon sources for optical quantum information applications, with potential for miniaturization and integration on chip. Here, entangled photon pairs are generated in the biexcitonic radiative cascade resulting from electrical excitation of InAs self-assembled quantum dots placed in a p-i-n diode. In a first set of experiments the non-classical polarisation correlations and the ability to interfere the photons in two-photon interference experiments was verified, finding entanglement fidelities of up to 0.87+-0.04 and interference visibilities up to 0.60+-0.05. Encouraged by the two-photon interference experiments, the first directly electrically driven teleporter was implemented in a single-mode fibre circuit. An average fidelity of 0.704+-0.016 was achieved for six states symmetrically distributed on the Poincaré sphere, beating the classical limit of 2/3 and proving that quantum teleportation is taking place. A modified teleportation setup allowed for the accommodation of input photons from an independent CW laser. Two-photon interference between the dissimilar light sources was demonstrated and quantum beats could be observed. Quantum teleportation of polarisation states carried by laser photons was then performed with average fidelity 0.76+-0.012. Controlling confined charge carriers in nano-scale systems such as quantum dots requires a deep understanding of the underlying material physics, even on the nuclear level. Voltage control of electron-nuclear hyperfine spin interactions was demonstrated using a charge-tuneable device. Modelling suggests that the mechanism is controlled mainly via the electron hyperfine correlation time and the nuclear depolarisation time.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF
    corecore