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Abstract 
 

Semiconductor quantum dots offer an attractive route towards efficient and high-quality 
photon sources for optical quantum information applications, with potential for miniaturization 
and integration on chip. 

Here, entangled photon pairs are generated in the biexcitonic radiative cascade resulting 
from electrical excitation of InAs self-assembled quantum dots placed in a p-i-n diode. In a first 
set of experiments the non-classical polarisation correlations and the ability to interfere the 
photons in two-photon interference experiments was verified, finding entanglement fidelities of 
up to 0.87±0.04 and interference visibilities up to 0.60±0.05. 

Encouraged by the two-photon interference experiments, the first directly electrically 
driven teleporter was implemented in a single-mode fibre circuit. An average fidelity of 
0.704±0.016 was achieved for six states symmetrically distributed on the Poincaré sphere, beating 
the classical limit of 2/3 and proving that quantum teleportation is taking place. 

A modified teleportation setup allowed for the accommodation of input photons from an 
independent CW laser. Two-photon interference between the dissimilar light sources was 
demonstrated and quantum beats could be observed. Quantum teleportation of polarisation 
states carried by laser photons was then performed with average fidelity 0.76±0.012. 

Controlling confined charge carriers in nano-scale systems such as quantum dots requires 
a deep understanding of the underlying material physics, even on the nuclear level. Voltage 
control of electron-nuclear hyperfine spin interactions was demonstrated using a charge-tuneable 
device. Modelling suggests that the mechanism is controlled mainly via the electron hyperfine 
correlation time and the nuclear depolarisation time.  

 

Résumé 

 
Les boites quantiques de semiconducteurs représentent une voie attractive pour la 

réalisation de sources de photon efficaces pour le transfert quantique de l’information, avec un 
fort potentiel de miniaturisation et d’intégration. 

Dans ce travail, les paires de photons intriqués sont générées via le déclin radiatif de bi-
excitons, à partir de boite quantiques d’InAs auto-assemblées placé dans une jonction p-i-n. Dans 
une première série d’expérience d’interférence à deux photons, nous avons démontré des 
corrélations de polarisation non classiques et la capacité de deux photons à interférer. 
L’intrication a été démontrée avec une fidélité de 0.87±0.04, et une visibilité des interférences de 
0.60±0.05. 

Nous avons ensuite réalisé le premier téléporteur injecté électriquement dans un circuit à 
fibre monomode. Une fidélité moyenne de 0.704±0.016 a été mesurée pour 6 états  distribués 
symétriquement sur la sphère de Poincaré, ce qui supérieur à la limite classique de 2/3 et prouve 
la téléportation. 

Un dispositif modifié de téléportation permettant d’injecter des photons à partir d’un 
laser continu indépendant a été développé. L’interférence à deux photons entre sources 
différentes a été démontrée et des battements quantiques observés. La téléportation quantique 
des états de polarisation portés par les photons a été obtenue avec une fidélité moyenne 
0.76±0.012. 

Le contrôle du spin des charges confinés dans les nanostructures tels que les boites 
quantiques requiert une compréhension profonde de la physique des matériaux constituant, y 
compris au niveau nucléaire. Ainsi, nous avons démontré le contrôle électrique de l’interaction 
hyperfine entre les spins électroniques et nucléaires en utilisant un composant à charge ajustable. 
La modélisation suggère que le mécanisme est contrôlé par le temps de corrélation hyperfine de 
l’électron et le temps de dépolarisation du noyau.  
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1 Introduction 
 

1.1 Entanglement 
 
Entanglement is a central concept in quantum physics and has been the cause of much 

debate regarding the interpretation and completeness of quantum mechanics, most notably 
involving authorities such as Einstein1, Bohr2 and Schrödinger3 in the first half of the previous 
century4. In addition to its role as a fundamental concept it is today slowly moving towards the 
realms of engineering and applications as the field of quantum information matures5. 

The type of entanglement considered in this thesis is polarisation-entanglement of two 
photons, described by states such as 

 

|   ⟩   |    ⟩  |      √  

 

(1.1) 

where H and V are linearly polarised orthogonal states. Note that the state in equation 1.1 is 
inseparable with respect to particles 1 and 2. If we would measure the polarisation of any of the 
particles on its own, we would find that it was completely random, i.e. unpolarised. Still, if we 
measured both particles 1 and 2 and compared the results, we would find that they were always 
perfectly correlated. Erwin Schrödinger (who coined the term entanglement) captured this, which 
is perhaps the essence of entanglement, rather well6: 
 
“Best possible knowledge of a whole does not include best possible knowledge of its parts - and that is what keeps 
coming back to haunt us.” 
 

Having two particles in a state such as |   ⟩ above has very counter-intuitive and 
distinctly non-classical consequences; the photons 1 and 2 can in principle be separated by an 
arbitrarily large distance, and a measurement on 1 yielding H will instantaneously reduce the 
possible outcomes of particle 2 to H only, in accordance with the collapse of the wavefunction in 
the Copenhagen interpretation. Einstein, Podolsky and Rosen strongly objected to this non-local 
consequence of the interpretation of quantum mechanics, and argued that the theory must be 
incomplete1. Bell7 and others8 later developed a set of inequalities whose violation would disprove 
the possibility of any underlying “hidden variables theory” that could actually be at play and 
explain the correlations. 

Today, after numerous experiments violating the Bell inequalities (albeit all with small 
imperfections and possibilities of “loopholes”)9–12, entanglement is an accepted part of quantum 
physics, and it plays a key role in quantum information applications. Perhaps the most prominent 
example, and an important primitive for more complex tasks, is quantum teleportation13,14 (the 
topic of chapters 3 and 4), in which a measurement is performed on two particles, yielding no 
information about the individual particles but full information about their joint state, resulting in 
transfer of quantum information onto a third particle. 

Entanglement is not limited to just two photons – the largest entangled state produced to 
date (with considerable effort) is with eight photons15 – and in principle any degree of freedom 
could be entangled (e.g. space, time, energy). Furthermore we are by no means restricted to 
photonic qubits; entanglement has been demonstrated for example using atoms16 , ions17 and 
spins in NV-centres18. When it comes to entangled photon pairs specifically, there is a need to 
replace the most commonly employed source spontaneous parametric down-conversion (SPDC). 
Semiconductor quantum dot light sources, the topic of this thesis, represent one of the prime 
candidates to achieve this.  
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1.2 Self-assembled quantum dots 
 

1.2.1 Background 
 
“Quantum dots” (QDs) can be considered a collective name for several types of 

semiconductor nanostructures that have in common that they provide charge carrier 
confinement, which can be provided either by enclosing a lower bandgap material in a higher 
bandgap one or by just limiting the size of small semiconductor crystallites. Colloidal quantum 
dots, nanoscale semiconductor crystals created by nucleation from pre-cursors suspended in a 
liquid, emerged in the 1980s19,20. In the late 1980s lithographically defined QDs were realised and 
the term “quantum dot” was coined21. Other ways to provide three-dimensional confinement is 
by electrostatically defining a trapping potential22 or, which is the type of dot used in the rest of 
this work, through self-assembly of QDs by epitaxial thin film growth, which has also been 
researched since the 1980s23. 

All samples used in subsequent chapters are InAs QDs on GaAs substrates grown by Ian 
Farrer at the Cavendish laboratory of the University of Cambridge by molecular beam epitaxy 

(MBE). In MBE growth material is deposited slowly (~μm/h), layer by layer, which results in 
very high crystal quality with few defects and well-defined material layers. For InAs self-
assembled dot growth the In and As atoms are deposited in a thin film on a GaAs crystal. Both 
semiconductors have a face-centred cubic zinc-blende structure but are lattice mismatched 
(~7%). This results in a strain developing as the InAs is deposited, and after about two 
monolayers small islands – quantum dots – start to nucleate spontaneously on the InAs thin film 
which is commonly called the wetting layer (WL). This growth mode with dots forming on top of 
a wetting layer (essentially a quantum well) is referred to as Stranski-Krastanov (S-K) mode. 

Typical morphology of self-assembled InAs QDs are lens shaped islands of ~5 nm 
height and ~30 nm base24. The small size, combined with confinement due to the differing 
bandgaps (GaAs ~1.5 eV, InAs ~0.35 eV25) gives the QDs quantized electronic structure and 
discrete optical transitions26 which has earned the QDs the popular nickname “artificial atoms”. 
Figure 1.1 below shows an example photoluminescence spectrum of an InAs QD sample, 
showing broad wetting layer emission and many discrete spectral lines attributed to an ensemble 
of QDs. 
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Figure 1.1: Photoluminescence spectrum of InAs self-assembled QD sample excited by a 

780 nm laser, exhibiting a broad, intense peak from recombination in the wetting layer (~868 nm) 
and an ensemble of discrete lines between ~880 – 900 nm attributed to quantum dots. 
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Through variation of MBE growth conditions the properties of the QDs can be varied 

according to intended application, for example the QDs used in chapters 2-4 were optimized for 
entangled light emission27, while the dots in chapter 5 were designed to emit at slightly longer 
wavelength. The spontaneous nucleation in S-K growth means that the spatial distribution of 
QDs is random, which of course can be problematic for applications. To address this issue site-
controlled QD growth is being researched28,29, but so far these dots do not match the self-
assembled ones in quality, for example in terms of narrow linewidths. Of particular interest with 
respect to the main theme of this thesis are recent results showing entangled photon pair 
emission from site-controlled QDs30. 

Quantum dots find many potential applications in the field of quantum information 
processing31, most notably as single photon emitters32,33, entangled photon pair emitters34,35 but 
potentially also as quantum memories36 and even for photonic cluster state generation37. 

 

1.2.2 Electronic structure and exciton complexes in InAs quantum 

dots 
 
The bandgap of InAs is very small, only ~0.35 eV, much smaller than that of GaAs (~1.5 

eV) and also very different to the emission at energies ~1.4 eV attributed to the InAs WL and 
QDs in figure 1.1 above. From the quantum mechanical textbook example of a particle in a one-
dimensional potential well38, in which the lowest lying energy state of a confined electron scales 

as         (relative to the bottom of the well), we can understand that the size plays a role. 

The emission can be expected to blueshift as   becomes smaller. We can also expect the states of 
trapped charge carriers to be quantized for a sufficiently small confinement region. For a realistic 
model of the quantum dot electronic structure a more sophisticated model is needed, in 
particular the weaker in-plane confinement needs to be accounted for. Modelling the QD as a 
disk or as lens shaped39, the “orbitals”, or angular momentum states, of the “artificial atoms“ can 
be described. It has been found that a parabolic in-plane confinement potential, illustrated in 
figure 1.2, describes the lowest lying states (labelled s, p following atomic physics conventions) of 
QDs well40. 
 

 
Figure 1.2: Schematic of QD in-plane confinement potential and states. Only the ground 

state (s) and first excited (p) state for electrons and holes are shown. The blue bands represent 
the wetting layer continuum of states, with carriers free to move in the 2D plane of the wetting 
layer. 
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Usually, it is sufficient to consider only the lowest lying s-orbital and possibly the first excited 
state (p), as higher states are either not confined39 or relax to the ground state very rapidly41,42, 
significantly faster than typical exciton lifetimes (a few 100 ps to 1 ns). Furthermore, it is usually 

sufficient to limit the discussion to heavy holes (angular momentum projection        ), as 

spin-orbit coupling splits off light holes (       ) by several tens of meV in InAs QDs43 

which are therefore usually not well confined. Typical confinement energies for electrons and 
heavy holes in InAs QDs are 50 meV and 25 meV respectively43. The proximity in energy to the 
wetting layer quasi-continuum of states limits the use of InAs QDs to cryogenic temperatures, as 
significantly higher temperatures lead to thermally assisted carrier escape. Other material systems, 
for example CdSe/ZnSSe from the II-VI groups, provide wider bandgap differences and 
stronger confinement and can be used to address this problem40. 

QDs are optically active through radiative recombination of the excitonic complexes. The 
neutral exciton (X) forms when one electron and one hole are trapped in the dot. The exciton 

total angular momentum projection quantum number   is a combination of electron and hole 

spin/angular momentum,            . Either the electron and hole spins line up parallel, to 

form the dark exciton states with total angular momentum     , or anti-parallel to form the 

optically active      bright states44. Hybridisation between dark and bright states due to a 
transverse magnetic field or confinement potential asymmetries does allow for the dark states to 
be weakly observed in spectroscopy44, but we shall safely ignore them in the rest of this thesis.  

The X and the biexciton (XX, formed by two electron-hole pairs) will be of particular 
interest in most of this thesis as they can be used for entangled light generation. Figure 1.3(a) 
shows a state diagram illustrating how this can occur in an ideal quantum dot. Since the biexciton 

has     and the bright exciton eigensstates have     , conservation of angular 
momentum dictates that the emission will be circularly polarised, carrying angular momentum 

  . This means that photon pairs emitted in a radiative cascade form XX to the ground state will 

be polarisation-entangled in state | ⟩   |     ⟩  |     ⟩  √ . Unfortunately, real world 
QDs always possess varying degrees of asymmetry due to e.g. strain. This anisotropy introduces 

an electron-hole exchange interaction which hybridises the exciton      states, making the 
new eigenstates linearly polarised and non-degenerate as illustrated in figure 1.3 (b)44. The 

splitting  , commonly referred to as the fine structure splitting (FSS), causes the joint photon pair 

polarisation state to be | ⟩   |     ⟩             |     ⟩  √ , where   is the time 

spent in the intermediate X state45. Unless the natural linewidth of the exciton state      (or, 
expressed equivalently in the time domain, a lifetime shorter than the entangled state evolution 

period    ) this will result in reduced entanglement fidelities. Loss of coherence between the 

|     ⟩ and |     ⟩ components and spin-scattering in the X state have been found to occur 
on time scales significantly larger than the X lifetime46,47 and play an negligible role. 
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Figure 1.3: (a) An ideal, perfectly symmetric quantum dot emits polarisation entangled 
XX and X pairs in a radiative cascade. The X eigensstates have eigensstates characterised by total 

angular momentum      which recombine with emission of circularly polarised photons.  
(b) QD anisotropy causes electron/hole exchange interactions, hybridising the otherwise 
degenerate XL and XR states and introduces a fine structure splitting s, which results in an 
unwanted phase factor in the XX-X biphoton state. 

 
 
Different approaches to reducing the FSS have been developed, one of them being to 

address the QDs directly: The FSS of self-assembled InAs QDs correlates with the X emission 
energy, and at 1.4 eV (885 nm) the average QD FSS is minimised27 although a statistical 
distribution still exists. The physical cause for the minimised FSS is attributed to weaker exciton 
confinement and increased penetration into the surrounding barrier material, which reduces the 
effect of the exchange interaction and consequently minimises the FSS. Dots with emission 
wavelength around 885 nm can be obtained with appropriate QD growth conditions, which is 
the approach taken for dots used in this work, or post-growth thermal annealing27,48. Reversible 
tuning of the FSS by magnetic field35, strain49 or electric field50 has also been shown to be a viable 
approach to minimise the FSS. Another post-growth method is to fabricate an optical 
microcavity at the site of a suitable QD34, circumventing the FSS by achieving Purcell 

enhancement and ensuring     . Using other quantum dot material systems such as strain-free 
GaAs droplet dots offers yet another path towards entangled light emission that is also being 
pursued51. 

Singly charged negative/positive excitons    can form when an electron/hole is added 
to the neutral exciton or removed from the biexciton. In the context of entangled light emission 
they are unwanted and must be suppressed, as they can interrupt the radiative cascade and reduce 

the XX-X entanglement fidelity. In other situations the positive exciton    is welcomed, since it 
can be used as a tool to optically control and probe the electron-nuclear hyperfine interactions, as 
demonstrated in chapter 5. 
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1.3 Quantum dot light-emitting diodes  
 

1.3.1 Background 
 
The need for new single-photon and entangled photon-pair sources is getting more and 

more evident in the rapidly developing field of optical quantum information science. The most 
commonly used type of source, spontaneous parametric down-conversion (SPDC) pumped by 
lasers is inherently probabilistic with random number of photons emitted in each excitation 
pulse. The photon numbers are governed by Poisson statistics, which means that if the 

probability to get one photon pair is   the probability to have two photon pairs is     . 
Multiple-pair rates can introduce errors in quantum computing circuits or make quantum key 
distribution systems vulnerable to photon-number-splitting attacks52. Already in today’s relatively 
small scale multi-photon experiments the multi-pair emissions constitute a limiting factor14,53. The 

only way to keep the multiple-pair probability low is to keep the overall intensity (i.e.  ) low, and 
for SPDC high efficiency and low error rate thus stand in fundamental contradiction to each 
other54,55. Quantum dots on the other hand in principle do not have such a limitation, and 
furthermore offer many degrees of engineering freedom and tuneability with respect to emission 
wavelength, fine structure and other properties (with a very important one being the optical 
cavity design, see section 1.3.3). This could potentially allow QDs to be used as a technological 
foundation for triggered, high-efficiency, high purity quantum light sources, and has therefore 
attracted a lot of research interest in recent years. 

By placing a quantum dot in a diode structure an electrically driven single-photon source 
can be created. The motivation for having an electrically driven and controlled semiconductor 
single photon source is clear, as semiconductor technology could allow them to be miniaturised, 
and one could envision something like integrated sources without the need for bulky driving 
lasers typically used for optical excitation.  

A proposal for single-photon and entangled-pair emitting diodes based on quantum dots 
was introduced in 2000 by Benson et al56. The proposal centred around resonant tunnelling of 
electrons and holes into the quantum dot to deterministically load it with carriers, and optical 
cavity engineering to achieve high light extraction efficiency. The first single photon emitting 
diode was realised by Toshiba Research Europe in 200233, followed later by other groups also 
showing promising results57,58. In 2010 the first entangled-light emitting diode was demonstrated, 
also based on quantum dots59. The operation principle, which is simpler than Benson’s original 
proposal, is described in sections 1.3.2 and 1.3.3. 
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1.3.2 Entangled light emitting diode 
 
The entangled-light-emitting diode59 (ELED) is based on self-assembled InAs QDs, 

grown to emit around 885 nm and thus have minimal FSS (see section 1.2.2), embedded in a  
p-i-n diode structure. Figure 1.4 below shows a schematic band diagram of such a device. When a 
positive bias voltage is applied the potential barrier extending over the intrinsic GaAs region is 
lowered and current can flow through the junction. Electrons and holes relax via the wetting 
layer to the ground state of the quantum dot, where they can form biexciton (XX) and exciton 
(X) complexes. As discussed in section 1.2.2 polarisation-entangled XX-X pairs can be emitted if 
the radiative recombination happens in a cascade from the XX state. A key design parameter for 
the ELED is the thickness of the intrinsic region, which is relatively large, ~400 nm. It was found 

that with thinner intrinsic regions charged emission lines (primarily   ) appeared and 
polarisation correlation was lost, indicating tunnelling of electrons into the dot60. Hole tunnelling 
is easier to suppress as holes have ~10 times higher effective mass than conduction electrons in 
GaAs.  

 

 
 
Figure 1.4: Schematic band diagram of the entangled-light-emitting p-i-n diode. Applying 

a positive bias lowers the potential barrier and allows current to flow through the junction, 
resulting in population of the QDs. A thick intrinsic region (~400 nm) ensures that the QD 
emission is dominated by the neutral exciton complexes (XX, X). 
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The ELED design also includes distributed Bragg reflectors of alternating layers of Al(Ga)As and 
GaAs (see section 1.3.3 for details) to improve the light collection efficiency around the 
wavelengths of interest (~885 nm). The DBRs are placed outside the intrinsic GaAs region and 
are epitaxially grown together with the QDs. High doping levels ensure that they are essentially 
metallic and highly conducting. 

Device mesas of typical dimensions on the order of 100 μm x 100 μm are defined using 
standard optical lithography and wet-etching techniques. Bottom contacts (to the n++ layers) are 
deposited using evaporation, lift-off and subsequent thermal annealing of AuGeNi to form a low 
resistivity Ohmic contact. Quasi-ohmic top contacts are typically made by depositing Ti/Au on 
top of the p++ doped DBRs. Figure 1.5 shows current-voltage characteristics for a 
representative ELED fabricated in this way. Turn-on occurs around ~1.5V, roughly matching the 
bandgap of GaAs as expected. In reverse bias the leakage is in the picoampere range, indicating 

shunt resistances at least          . In high forward bias the current is limited by series 

resistances61, and here we find        . 
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Figure 1.5: IV characteristics of a typical quantum dot p-i-n diode (a) linear scale and (b) 

semi-logarithmic scale.  
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1.3.3 Optical cavity design 
 

1.3.3.1 Planar cavity design considerations 
 
A well-known problem for semiconductor light sources, quantum light sources and 

general-purpose LED lighting alike, is to achieve high light extraction efficiencies61,62. The first 
caveat is that a dipole emitter, for example a single QD, in the semiconductor emits half the light 

into the    solid angle away from the extraction surface. This can obviously be addressed by 
engineering a reflective backplane, thereby “recycling” the light. In epitaxially grown 
heterostructures, such as the QD LEDs considered here, a bottom mirror can be realised by 
introducing distributed Bragg reflectors (DBRs), consisting of alternating layers of thickness 

      of materials with different refractive index   . In our QD LEDs the DBRs are made out 

of Al(Ga)As (          ) and GaAs (         ). Another problem is that due to the high 

refractive index contrast between semiconductors and air (   ), the angle of total internal 

reflection at the semiconductor-air interface is only                     (relative to the 
surface normal), which means that all light emitted at higher angles remains trapped in the 
semiconductor material. Figure 1.6 shows the simulated extraction efficiency for a dipole emitter 
placed in a GaAs slab two wavelengths below the air interface, for 0-20 bottom DBR repeats and 
different collecting numerical apertures. The calculations were carried out using CAMFR63,64, a 
Maxwell equation solver designed for optical microcavity simulations. For NA=0.5 (typically 
used in experiments in following chapters) the collection efficiency is limited to ~0.6% with no 
bottom mirror. For increasing number of repeats the DBR reflectivity improves, and the 
theoretical collection efficiency saturates around 8% for ~20 repeats. 
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Figure 1.6: Light collection efficiency for dipole placed 2  below GaAs-air interface for 
various collecting numerical apertures and bottom DBR repeats.  
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In figure 1.6 above it is worth noting that the efficiency improved more than 10 times, 
significantly more than the factor of two if the structure just recycled the light emitted into the 
“wrong” (bottom) hemisphere. This can be explained by a resonant cavity effect, in which 
reflected waves from the bottom mirror interfere constructively with forward-emitted waves. 
Light emitted obliquely goes through regions of positive and destructive interference depending 
on the angle64,65. This concept can be taken further by incorporating top mirror DBRs as well, 
forming a resonant cavity LED (RCLED) with improved collection efficiency over a range of 
wavelengths. 

Figure 1.7(a) shows the simulation results for a     thick cavity with an in-plane electrical 
dipole emitter placed in the middle, sandwiched between six top and 18 bottom GaAs/Al(Ga)As 

DBR repeats. The nominal design wavelength        nm determines the cavity and DBR 
layer thicknesses, and was chosen to coincide with the emission wavelength of InAs QD for 

minimal FSS27. Figure 1.7(a) shows the out-coupling efficiency     , defined as the proportion of 
the light that escapes the semiconductor, the proportion of the out-coupled light that can be 

collected in a NA=0.5 aperture       and the total efficiency                 as a function of 

emission wavelength. Examining      the first thing to notice is that the maximum extraction 
efficiency occurs at ~880 nm, i.e. not at the nominal design wavelength, and then remains 
essentially constant for shorter wavelengths in the simulated range. This is because for positively 

detuned cavities (    ) the first resonant mode falls within the escape cone of the 
semiconductor-air interface, a well-known effect for RCLEDs65. A side-effect of positive 
detuning is that the emission pattern becomes less directional66, as can be seen by comparing 

figure 1.7(c) showing angular emission pattern for          nm and 1.7(b) for   
        nm. For a given NA (here NA=0.5) a higher emission angle (shorter emission 
wavelength) of the out-coupled light means less can be collected, which explains the drop of 

      for     . All factors taken together, the total efficiency      has a peak value of 17% 
centred around 883 nm, i.e. only slightly detuned from the nominal design wavelength, and a 
bandwidth of FWHM~8 nm.  

By adding more top and bottom DBRs the resonant cavity effect can be made stronger 
over a narrower bandwidth. One thing to consider for the ELED is that the X and XX 
transitions are in general not degenerate due to Coulomb interactions between the confined 
charge carriers. Typical separations are ~2-3 nm and the optical microcavity must thus be 
designed with this in mind. A very narrow cavity resonance will also give a lower quantum dot 
yield since fewer dots will emit within the wavelength window.  

A small simulation study of different number of top and bottom mirror repeats was 

carried out, with results presented in figure 1.8, showing the total efficiency      (at optimal 
detuned wavelength) for 10-22 bottom repeats and 0-12 top repeats, assuming collection optics 
with NA=0.5. As one can expect, the efficiency is increasing with the number of bottom DBRs, 
but the returns are rapidly diminishing as one approaches ~20 repeats. For each number of 
bottom repeats the optimal number of top repeats is slightly different, reflecting the balance 
between out-coupling through top mirror and emission directionality into the collection optics 
that must be met.  
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Figure 1.7: (a) Simulated LED light output coupling efficiency (black squares), NA=0.5 

collection efficiency (red circles) and total efficiency (blue triangles) for a 6/18 top/bottom DBR 

2   cavity with nominal design wavelength        nm. Maximum total efficiency 17% occurs 

for 883 nm. Intensity distribution (log scale) as a function of angle to the normal for (a)     , 

(b)      and (c)     . 
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Figure 1.8: Peak total efficiency for     cavities with different numbers of bottom and top 

DBR repeats. 

 

Figure 1.9 shows a comparison of simulated      and experimentally acquired PL-
spectrum for a 6/18 DBR cavity with an InAs wetting layer with very low QD density and no 
QDs in the focal spot. The sample was non-resonantly excited at 780 nm with a diode laser. The 
PL-spectrum shows a very bright peak at ~860 nm originating from recombination in the wetting 
layer. No quantum dot emission can be seen, but a peak at 888 nm is visible which is attributed 
to the tail of the wetting layer feeding into the optical cavity resonance. As shown in the inset the 
simulated efficiency and PL-intensity overlap very well, verifying that the simulations give 
qualitatively reliable predictions about the cavity design. 
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Figure 1.9: Experimental collected emission spectrum for optically excited sample with 

6/18 DBR cavity but no quantum dots in the focal spot (black curve). The wetting layer tail 
extends into the optical cavity wavelength region at ~890 nm with enhanced collection efficiency 
as a result. The overlaid simulated collection efficiency (red curve) fits the shape of the 
experimental spectrum well. Inset shows the cavity wavelengths zoomed in. 
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We can conclude that the cavity configuration with 6/18 DBRs presented in figure 1.7 is 

a reasonable compromise that gives high light collection efficiency and a relatively broad cavity 
resonance, able to accommodate both XX and X transitions of typical separations. The predicted 
efficiency improvement compared to bare GaAs is almost 30-fold. Although one can expect that 
real-world imperfections reduce the total efficiency, it is in the laboratory obvious that the planar 
cavity greatly enhances the QD ELED brightness. It should be noted that only negligible Purcell 
enhancement of spontaneous emission rates is predicted for planar microcavities65,66, and any 
such effects are most certainly insignificant in experimental situations. 

 

1.3.3.2 Alternative cavity designs 
 
As mentioned above the planar cavity cannot provide Purcell enhanced spontaneous 

emission. This would however be highly desirable in order to achieve indistinguishable photons, 
and indeed such structures can and have been realised in for example photonic crystal 
waveguides67 and pillar microcavities32,68. Purcell enhanced radiative lifetimes can create new 
problems with re-pumping of the dot leading to poorer single photon emission characteristics, 
and to address this different nanowire geometries have been investigated69. Very high efficiencies 
(>70%) have been demonstrated with such designs70, and they could be made compatible with 
electrical operation71. Entanglement generation via the biexciton cascade presents a problem for 
narrow-band resonant structures such as pillar microcavities, since the XX and X photons in 
general are not degenerate. At the same time, Purcell enhanced spontaneous emission of the 
exciton state appears to be a key to circumvent the finite FSS. To achieve reduced lifetimes for 
both X and XX a double micropillar structure (“photonic molecule”) was used by Dousse et al, 
achieving high brightness and entanglement fidelities of ~60% without post-selection34. 

The optical microcavities mentioned here offer many avenues that could be explored in 
order to engineer the emission properties of QD based single photon and entangled light 
emitting diodes. The planar resonant cavity, however, remains considerably simpler to implement 
and achieves significant improvements in light collection efficiency compared to having no 
cavity, without which in particular the three-photon experiments of chapters 3 and 4 would not 
have been possible. 
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1.4 Experimental methods 
 

1.4.1 Single quantum dot spectroscopy 
 
Spectroscopic methods were used to characterise and select single quantum dots suitable 

for the experiments of chapters 2-4. The samples are mounted in a liquid helium cryostat and 

cooled to ~5-15K. The light from the focal spot (~1 μm) is collected into a numerical aperture 
NA=0.5 and coupled into either single mode fibre or polarisation-maintaining fibre, with 

coupling efficiency estimated to ~50%. The small core (~5 μm) and the small acceptance cone of 
the fibre (NA~0.1) combined with a relatively low quantum dot density in the samples (on the 

order of one QD per μm2) means that single dots can be addressed individually with very little 
light from nearby emission centres being collected. A spectrometer with 600 lines/mm or 1800 
lines/mm combined with a low-noise CCD was used to acquire spectra. A motorised half-
waveplate can optionally be inserted in the light path before the fibre coupling. Then, if the 
optical fibre is of polarisation-maintaining type and a linear polariser is placed before the 
spectrometer entrance slit, polarisation-resolved spectroscopy can be performed to determine e.g. 
the FSS of the exciton state (see section 2.2.1.1). A white light (broadband) LED is used to 
illuminate the sample and an image of the sample is registered by a video camera, which allows 
the sample surface to be navigated using precision stages. 

In chapter 5, where spectroscopy plays a very prominent role, a similar but slightly more 
advanced magneto-spectroscopy setup was used, described in more detailed in said chapter.  

 
 

 
 
Figure 1.10: Optical setup for single quantum dot spectroscopy. The sample is placed in 

liquid helium cooled cryostat. An LED for white light illumination and a camera is used for 
orientation on the sample. Light from the sample is coupled into polarisation-maintaining fibre 
and sent to a spectrometer equipped with a low-noise CCD. A half-waveplate in combination 
with a linear polariser is optionally used for polarisation-resolved spectroscopy. 
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1.4.2 Photon correlation measurements 
 
In chapters 2-4 photon correlation measurements are carried out to probe the light states 

generated by the quantum dots. In order to observe the quantum effects fast photodetectors are 
required, and for this purpose single photon counting detectors in combination with fast time 
correlation electronics are used. The detectors used in this work are either Silicon avalanche 
photodiodes (APDs) or superconducting single photon detectors (SSPDs). The APDs operate 
near the reverse breakdown voltage, which leads to an electron avalanche upon detection of a 
single photon, thereby providing sufficient gain to make detection of single quanta possible. The 
detection principle of the SSPDs is based on loss of superconductivity (and consequently 
increased resistance) in the sensing element upon absorption of a single photon. This gives rise to 
a voltage pulse in the amplifier that can be detected. The SSPDs offer time resolution of ~100 ps, 
to be compared to the ~300-400 ps resolution of the Si-APDs. This is however achieved at the 
cost of lower detection efficiency. 

The photon correlation electronics has fast discriminators that trigger upon the arrival of 
an electronic pulse from a detector. Using time to amplitude converters (TAC) and amplitude to 
digital (ADC) converters the time interval between triggering events from two detectors can be 
measured with accuracy limited by the detector timing jitter. This enables the measurement of 
various time-resolved correlation measurements, for example exciton or biexction auto-
correlations (Hanbury-Brown-Twiss measurements, section 2.2.1.1), polarisation correlations to 
evaluate entanglement (section 2.2.1.2) and three-photon correlations for quantum teleportation 
experiments (chapters 3-4). 

In subsequent chapters 2-4, we will continually refer to different polarisation states. We 
adopt the convention that H and V refer to linear polarisation states coinciding with those 
emitted by the exciton eigenstate (see figure 1.3). D/A refer to the linearly polarised diagonal 

superposition states |   ⟩   | ⟩  | ⟩  √  and R/L refer to the circularly polarised 

superposition states |   ⟩   | ⟩   | ⟩  √ . 
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1.4.3 Single photon interference 
 
Single photon interference (SPI) experiments can give insight into the quantum dot 

physical environment not readily available with spectroscopy directly in the frequency domain72,73, 
and is used to characterise the photons produced by the ELED for use in experiments of chapter 
2-4. Figure 1.11 below shows a schematic of a Michelson interferometer used for such single 
photon interference measurements. By measuring the interference fringe visibility as the relative 

time delay   between the paths is increased one can determine the photon coherence time    and 
infer the transition lineshape. 

 
 

 
 

Figure 1.11: Michelson interferometer consisting of a 50/50 beamsplitter and 

retroreflector. The relative path difference   between the two arms refers to round-trip time and is 
variable. 

The interferometer is realised by splitting the incoming mode 1 using a balanced 
beamsplitter. The length of both arms can be varied, one over a relatively long range to introduce 

large relative path differences (tens of cm), and the other over just very short ranges (tens of μm) 
using piezo stages with high precision. When the two light field components are recombined on 
the splitter they form a superposition in the output mode 2. This can be described by expressing 

the electric field operator   
     for the output in terms of the operator for the input mode, 

  
    , taking the passages through the beamsplitter into account: 
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If we assume that the input photons come only one by one, i.e. the input Fock state is | ⟩ , and 
that they occupy only certain modes with spatio-temporal mode functions      , the detection 

probability at time t for a given delay   can be calculated74: 
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Experimentally, the photons are usually detected by measuring over a long time compared to the 
photon wavepacket, either using a spectrometer with a CCD or with photon counters such as 
APDs. Therefore, we integrate over all detection times t to get the experimentally accessible 
detection probability (proportional to measured intensity): 
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(1.4) 

 

Here we have used that the wavepackets are normalised to ∫   
 

  
|     |

    and c.c. means 

complex conjugate. 
By varying the long arm the overlap of the displaced wavepacket envelopes at the output 

mode 2 can be modified as indicated schematically in figure 1.11. Now, by varying the short arm 
by fractions of the photon wavelength   interference can be observed when detecting the light in 
the output mode. The interference goes periodically from constructive to destructive with period 
  as the short arm delay is slowly varied. For     this interference can be made to be perfectly 
constructive or destructive. For     two effects degrade the interference fringe visibility:  
 

 “Natural” decoherence due to the finite radiative lifetime    or “length” of the photons 

resulting in different magnitudes of the overlapping wavepackets at a given detection 

time, as illustrated in figure 1.11. 

 Random phase variations in the light field caused by dephasing processes in the quantum 

dot environment during the emission process, for example fluctuating Coulomb 

interactions with charges in nearby traps. The time scale on which these events occur is 

called the pure dephasing time   , and once the delay      the displaced wavepackets 

tend to no longer add upp in phase. 

 

These two effects can be embodied in the spatio-temporal mode functions      . For quantum 

dots we consider single photon emitters dissipating their energy in an exponentially decaying 

fashion with characteristic time   , with phase evolving according to the central transition 

frequency  . The dephasing can be described by a phase fluctuation      which is assumed to be 

time-invariant random process with average zero75. The mode function can thus be written as: 
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 (1.5) 

 
Returning to equation 1.4 we can now evaluate the detection probability: 

 
 

       
| | 

 
∫   (                  [           ]     )

 

 

 

 

(1.6) 

 



18 
 

The random process      is assumed to be significantly faster than the radiative decay, and then it 

can be shown that that 〈       [           ]〉        | |    73,76, which leaves us with the 
follow expression: 
 

  

          | |    ⁄  | |   ⁄               | |            
 

(1.7) 

 

In the above expression we have related the coherence time    to the radiative lifetime 
and the pure dephasing time: 

  

  
 

 

   
 

 

  
 

 

(1.8) 

 

When the photons suffer no dephasing (    ) the coherence time is limited by the radiative 
lifetime and are said to be transform limited. For quantum dots without Purcell enhanced 
emission, however, the dephasing is usually significantly faster than the lifetime, and to all 
practical matters      .  

From equation 1.7 we can see the fast modulation       with small changes in the 
interferometer delay, as well as a slower overall decay       | |     for large changes. 
Experimentally, we measure the interference fringe visibility which is related to the local minima 
and maxima of eq. 1.7: 
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(1.9) 

 
The dephasing processes considered above fall into the category called the fast-

modulation regime73,77. The exponential decay in equation 1.9 is directly related to a Lorentzian 
lineshape in the frequency domain78. If the random modulations are on a time-scale longer than 
the radiative decay time we will observe an inhomogeneous type of line-broadening, with the 
spectral lineshape and SPI visibility tending towards Gaussian shapes due to our measurement 
averaging over effectively over an ensemble of “preparations” of the dot environment. 
Therefore, the careful observation of single photon interference will reveal important 
information about the environment of the single photon emitter. 
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2 Two-photon interference with electrically 

generated entangled photons 
 

2.1 Introduction 
 
Quantum dots placed in weak optical cavities have been used to demonstrate two-photon 

interference through post-selection in a multitude of ways; with a single source interfering 
subsequent electrically generated photons79,80, two remote quantum dots electrically tuned onto 
resonance81 and photons from a quantum dot have been interfered with a laser source82. In this 
chapter we will see how photons emitted simultaneously by a quantum dot can be entangled, and 
photons emitted at different time can interfere.  

 

2.1.1 Two-photon interference and quantum logic 
 

Quantum interference between photons plays a fundamental role in optical circuits 
realising quantum logic and in universal quantum computing schemes such as those proposed by 
Knill-Laflamme-Millburn83/Gottesmann-Chuang84, as well as the recent multi-photon, multi-port 
Boson Sampling circuits85,86. 

If we take a few steps back from the general multi-port, multi-photon interferometers we 
find the interference between just two photons. The first two-photon interference (TPI) 
experiments were performed by Hong, Ou and Mandel87 (famously referred to as HOM-
interference) with photons generated through spontaneous parametric down-conversion (SPDC) 
in a nonlinear crystal. Many variations of the original experiment have been performed since 
then, including the demonstration of interference between photons from separate SPDC 
sources88 and quantum-eraser-type experiments89 which stress that the photons must be 
indistinguishable at the point of measurement but not necessarily at the beamsplitter where they 
overlap. Since then, many different types of sources have been used to demonstrate TPI: single 
molecules90, atoms91, ions92, Nitrogen Vacancy centres in diamond93 and semiconductor quantum 
dots79. 

At the very heart of two-photon interference lies the concept of indistinguishable 
particles. Let’s consider the typical HOM-type experiment depicted in figure 2.1 where two 
photons are incident on a 50/50 beamsplitter. Each photon can be either transmitted or 
reflected, with probability amplitudes      ,       ,      ,       94. This gives us in total 
four processes that can occur, but if the input photons are indistinguishable there is no way to 
distinguish the end state (a) from (c) where we have one photon in each output mode. Quantum 
mechanics dictates that the probability amplitudes for these processes involving bosonic particles 
must be added before considering the probability of the outcome95. If the beamsplitter is 

balanced (| |      and | |     ) the probability for two photons in opposite outputs 
vanishes:             . The probability for two photons appearing together in either 
output mode 3 or 4 becomes 1/2 for each case, and the effect can be observed as a “bunching” 
or increase of coincidence rates.  
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Figure 2.1: Possible processes when two photons are incident on a beamsplitter and 

associated reflection amplitudes: (a) Both photons reflected, (b) the photon from above is 
reflected and the one from below is transmitted, (c) both photons are transmitted and (d) the 
photon from above is transmitted and the one from below reflected. If the photons are 
indistinguishable the probability amplitudes for (a) and (c) interfere destructively. 

It is worth pointing out that two-photon interference effects do not always manifest 
themselves as “bunching”, indeed the effect can be the opposite – “anti-bunching”, or an 
increased probability of photons leaving in opposite ports – if the input photons are prepared in 

an appropriate anti-symmetric polarisation state such as |  ⟩   |    ⟩  |    ⟩  √  the spatial 
(mode) part of the two-particle state is also required to be anti-symmetric (ensuring an overall 
symmetric state) and interference will ensure that the photons will always appear in opposite 
output ports96. 

 

2.1.2 Modelling two-photon interference 
 
To aid the interpretation of the experimental results presented in the following sections a 

model based on the “wavepacket” analysis by Legero74 is used. This type of model has been used 
extensively and successfully before in similar two-photon interference measurements79,80,82,97. 

 

 
Figure 2.2: Beamsplitter with associated mode operators. 

Following Legero’s74 analysis (and the adaptation by Patel et al80 to non-Gaussian 
wavepackets) the beamsplitter is considered to have input ports restricted to single modes in the 
spatio-temporal domain. A balanced beamsplitter can be described using its mode 
creation/annihilation operators as depicted in figure 2.2, relating the input and output mode 
annihilation operators according to the common convention: 
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(2.1) 

 
At this point we do not consider how and when the input photons were generated, we only 
consider them as freely propagating and limited each to only one mode, described by exponential 
spatio-temporal mode functions consistent with the Lorentzian lineshapes observed for the X 
and XX transitions (see section 2.2.1.3 below): 
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The electric field operators for each mode is related to the creation and annihilation operators98, 
and due to the restriction to the mode functions of the form in eq. (2.2) this relation is straight-
forward74: 
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Using equation 2.1 the electric field operators for the output modes are trivially related to the 
input counterparts: 
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(2.4) 

 
The experiments described in the following sections are conducted in d.c., i.e. the arrival 

time of the photons is random, and to model this    has been introduced below as a relative time 
difference between the wavepackets describing the photons in each mode. Experimentally the 
two-photon interference manifests itself as a reduction in coincidences between the output 
modes. Therefore we are interested in calculating the two-photon detection probability of modes 

3 at some time t and mode 4 at time    74,80: 
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(2.5) 

 
As indicated by the bra and kets, this expression is conditional upon the presence of two photons 
in the input modes 1 and 2. Photons emitted by quantum dots usually suffer from decoherence 
caused mainly by phonon interactions and charge fluctuations in the dot environment, rendering 
photons emitted at different times partially distinguishable. This is included by adding a random 
phase fluctuation to the mode functions (as explained in section 1.4.3): 
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 (2.6) 

 
By inserting this function for both modes in eq. (2.5) and integrating over   and    we arrive at a 
joint detection probability which is not dependent on the absolute detection time, and is averaged 
over all possible relative generation time delays. The random phase fluctuations are evaluated 
similar to in section 1.4.3 and we arrive at the following expression: 
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(2.7) 

 
From eq. 2.7 we clearly see that a key parameter characterising the two-photon interference will 
be the photon coherence time, and we will use this later to aid the interpretation of the 
experimental results (sections 2.2.1.3 and 2.2.2.2).  
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2.2 Experimental 
 

2.2.1 D.c. generation of entangled and indistinguishable photons 
 

2.2.1.1 Device characteristics 
 
The device used in the experiments described here is an entangled-light-emitting diode 

(ELED) of the type described in section 1.3.2 with two top and 14 bottom DBRs. The device 
was operated at ~5 K in a liquid helium cooled cryostat system and electrically operated. 

Entangled photons can be emitted in the radiative cascade from the biexciton (XX) 
through the exciton (X)  states to the quantum dot ground state35,59, as described in section 1.2.2 
A pre-requisite is that the X fine-structure splitting (FSS) is small compared to the radiative 
lifetime99. The EL-spectrum of the quantum dot investigated here is shown in figure 2.3(a) at a 

d.c. current density of 70 nA/μm2
. The spectrum is dominated by the X and XX transitions 

centred around ~1.395 eV, close to ~1.4 eV (885 nm) where dots of this type have been shown 
to have a minimal average FSS between the exciton eigenstates27. Also seen in the spectrum are 
two very weak lines most likely originating from the positively and negatively charged exciton 
complexes. 

Through linear-polarisation-dependent spectroscopy the fine-structure splitting (FSS) 
below the resolution of the spectroscopy system can be detected; the detection is linearly 
polarised and a half-wave plate (HWP) selects the linear state that is detected. As the wave-plate 
is rotated the measured spectrum shifts through one linear eigenstate (H), to the orthogonal 
linear eigenstate (V) separated by a 45 degree rotation of the HWP. For intermediate angles 
varying proportions of these energy eigenstates are detected. For FSS smaller than the system 

resolution (~30 μeV) the change is only detectable as a change in centre of mass of the spectral 

lines, but this can be detected through lineshape fitting with an accuracy of ~1 μeV. Figure 2.3(b) 
shows the XX-X energy separation calculated from such a fitting procedure for the dot studied 

here. As shown, it was verified to have a FSS of 2.0 ±0.1 μeV. This dot selected for further study 
was also verified to have coherence properties suitable for two-photon interference experiments, 
as described later in section 2.2.1.3. 
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Figure 2.3: (a) Electroluminescence of the chosen quantum dot. (b) Energy difference of 

the XX and X transitions as a function of HWP angle determined in linear-polarisation-
dependent electroluminescence spectroscopy. A fit to the sinusoidal evolution allows the 

determination of the FSS = 2.0 ±0.1 μeV. 

One of the main disadvantages of conventional SPDC entangled-light sources is their 
Poissonian nature. This presents a fundamental trade-off between interference visibility and 
source brightness54, and limits their applicability in large quantum logic applications. The single-
photon emission properties of our quantum dot and device are therefore of particular 
importance. Figure 2.4(a) shows schematic of the Hanbury-Brown-Twiss setup used to 

investigate this. The light from the ELED is coupled to a fibre system. A spectral filter       

(with bandwidth significantly wider than the X or XX) is tuned to either one of the transitions. A 
50/50 beamsplitter and super-conducting single-photon detectors (SSPD1, SSPD2) allow for the 
measurement of the second-order correlation function: 

 
 

 
   
       

            

      
 

 

(2.8) 

 

For a perfect single-photon emitter     
         as two photons cannot be emitted 

simultaneously. Figures 2.4(b) and (c) show the measured correlation functions for the X and XX 
transitions respectively. As can be seen the dips extend almost to zero (0.07±0.01 for X, 
0.11±0.03 for XX). By calculating the simple function 

 
 

 
   
               | |     

 

(2.9) 

 
and convolving with the detector-pair response (measured to be Gaussian with FWHM ~150 ps) 

we can numerically fit the measured correlations and extract time constants    characterising the 

dips. We find           ps and          ps respectively. The longer time constant for X 

compared to XX is consistent with the longer lifetime typically found for X. The red curves in 
figure 2.4 show the theoretical background-free fits to equation 2.9, while the blue curves include 
the detector time response. The convolved curve overlaps very well with the experimentally 

determined correlations, and we can conclude that the value of the experimental     
       is 

consistent with essentially background-free emission and finite detector response. The low level 
of background emission from e.g. wetting layer can be attributed to the excellent spatial filtering 
which is an effect of the fibre-coupling.  
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Figure 2.4: (a) Hanbury-Brown-Twiss setup used to measure the second-order 

correlation function     
      . Second-order correlation function for the X (a) and XX (b) 

transitions respectively. Time constants    are found from numerical fitting of the simple 

function        | |    . 
 

To conclude our initial characterisation, the identified quantum dot exhibits a very high 
degree of anti-bunching in the second-order correlation functions for both the XX and X 
photons, signatures for a high-quality single photon source, and a necessary requirement for a 
source for future application in quantum logic. Furthermore, the dot has a small fine structure 
splitting, which is a requirement for the observation of non-classical polarisation correlations. In 
the following sections we explore how these properties allow us to observe both high degrees of 
entanglement fidelity and photon indistinguishability in two-photon interference measurements. 

 

2.2.1.2 Entanglement characterisation 
 
Entangled photon pair emission has been demonstrated from quantum dot based light 

sources under different conditions. Most experiments to date employ optical excitation using 
lasers34,35, but entanglement has also been demonstrated under electrical injection conditions59. 

To characterise the entanglement properties of the electrically driven ELED used here 
the setup schematically shown in figure 2.5 was constructed. Similarly to the Hanbury-Brown-
Twiss measurements above, the light from the ELED is first coupled to a fibre system based on 

polarisation-maintaining (PM) fibre. Monochromators (      ) isolate the XX and X photons, 
which then go down separate arms of the system. Polarising beamsplitters (PBS1, PBS2) and 
superconducting single-photon counting detectors (SSPDs) allow us to simultaneously measure 
time-resolved co-polarised (SSPD1-SSPD3) and cross-polarised (SSPD2-SSPD3) correlations 
between the XX and X photons. A half- or quarter-wave plate (WP) at the point of fibre 

coupling selects the measurement bases of the PBSes. All detection times   are recorded relative 
to the detection of one XX photon by detector SSPD3, which is our time reference. 
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Figure 2.5: Setup for polarisation correlation measurements in a polarisation-maintaining 

fibre system. Components include quarter-wave plate/half-wave plate (WP), tuneable spectral 

filters (     ) to isolate the X and XX photons, and superconducting single photon detectors 

(SSPD) detecting orthogonal polarisations  ,   using polarising beamsplitters (PBS). 

 
 
Ideally, the XX-X photon pair would be emitted into the polarisation Bell-state  |  ⟩  

 |  ⟩  |  ⟩  √ , where the first label in the ket refers to the XX polarisation and the second 
refers to the X polarisation. In order to estimate the fidelity of the detected photons onto this 
state it is sufficient to measure the polarisation correlations in three bases; the linearly polarised 
exciton eigenbasis (H-V), the diagonal superposition basis (D-A) and the circularly polarised basis 

(R-L)46. By defining the degree of correlation in a polarisation basis P-Q, where PQ: 
 

 

       
   

          
      

   
          

      
 

 

(2.10) 

 
we can express the fidelity onto the Bell state |  ⟩ as: 
 

 

          
  

                     

 

(2.11) 

 
It is worth pointing out eq. 2.11, with eq. 2.10 used for the degree of correlation, is valid only for 
un-polarised sources. We verify the quantum dot used here to be unpolarised within error. 

By re-casting the ideal Bell-state in the three polarisation bases under consideration here, 
we can see what polarisation correlations to expect: 

 
 

|  ⟩   |  ⟩  |  ⟩  √   |  ⟩  |  ⟩  √   |  ⟩  |  ⟩  √  

 

(2.12) 

 
In other words, in the linear bases we would ideally observe co-polarised XX-X pairs, and in the 
circular basis they should be orthogonally polarised. Figure 2.6 shows the measured time-resolved 
polarisation correlations (a) in the X polarisation eigenbasis H/V, (b) the diagonal superposition 

D/A and (c) the circular basis R/L. For small    , i.e. when the X photon is detected shortly 
after the XX photon, we observe the predicted correlations with strongly co-polarised photons in 

the linear bases and strong cross-polarised correlation in the circular basis. For negative   we 
observe a dip, which means that it is unlikely for X photons to be emitted just before the XX 
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photon. We can note that this dip goes very close to zero, on average 5.9% for the three bases 
compared to about 30% for the first measurements on similar electrically driven devices59, which 
can be attributed to the fast SSPDs that better resolve the correlations, and the spatial filtering of 
the fibre-based system rejecting unwanted background emission just as in the Hanbury-Brown-
Twiss measurements above.  
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Figure 2.6: Polarisation correlation measurements in (a) X polarisation eigenbasis, (b) 

diagonal and (c) circular basis. (d) resulting fidelity    to the maximally entangled state |  ⟩  

 |  ⟩  |  ⟩  √  with peak fidelity 0.85±0.01. 

 
Examining panels (a)-(c) we can see some interesting details; at about ~0.5 ns the unwanted DA-
correlation is of roughly equal magnitude as the wanted DD-correlation (panel b), while in the X 
eigenbasis (panel a) the cross-polarised component VH remains small. This is the effect of the 
non-zero FSS, which manifests itself as an evolution of the entangled state45 according to  
 

 

| ⟩  (|  ⟩        |  ⟩) √  

 

(2.13) 

 
where s is the FSS of the X state. In panel (c) we can also see that the circular (cross-polarised) 
correlations are stronger than the in the linear polarisation bases. This can be explained by 
considering the randomly fluctuating nuclear (effective) magnetic fields in the quantum dot: the 
electron in the X states experiences a random Overhauser field at different times of up to a few 

μeV. Effectively the X eigenstates, and thus polarisation states in 2.13, then tend from linear 
towards elliptical (the larger Overhauser field the closer to circular). The experimental 
observations, acquired over much longer time scales than these processes, thus become a time-
average over different polarisation eigenstates. The effect for dots with small FSS is a damping of 
correlations in the linear bases, resulting in stronger correlations in the circular basis100. 

Figure 2.6(d) shows the fidelity to the maximally entangled state |  ⟩ calculated using 
equations 2.10 and 2.11, reaching a peak value of 0.85±0.01, clearly above the achievable limit of 

1/2 using a classically correlated, unpolarised source emitting a mixture of |  ⟩ and |  ⟩. At 
large detection time differences the fidelity is ~1/4, consistent with completely mixed light as 
expected when the detected XX and X photons are not correlated. 
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2.2.1.3 Post-selective two-photon interference 
 
After verifying in the previous section that photons emitted in the same excitation cycle 

are entangled with high fidelity, we will now proceed to describe experiments verifying their 
indistinguishability, i.e. that it is possible to make photons generated in different excitation cycles 
interfere. This is a pre-requisite for the application of the entangled photons in e.g. quantum 
teleportation and entanglement swapping protocols. 

The coherence properties of the emitted photons are critical for their ability to interfere. 
Dephasing events in the quantum dot environment such as charge fluctuations in nearby traps or 
in the wetting layer will render the photons partially distinguishable. The key parameter 
characterising this is the coherence time, and it was therefore measured by single-photon 
interference in a Michelson interferometer as described in section 1.4.3. Figure 2.7(a) shows the 
measured interference fringe visibility as a function of interferometer delay at an injection current 

of 70 nA/μm2, the same as used for the entanglement measurements above. The visibility for the 
XX photon (squares) is found to decay slower than the X photon (triangles), i.e. it has a longer 
coherence time, and this is systematically observed for dots in these samples. The visibility is 
shown on a logarithmic scale, and the straight lines (XX red, X blue) indicate that the visibility 
decay follows an exponential decay very closely, implying a Lorentzian spectral lineshape and 
homogeneous broadening mechanisms for both photons. Homogeneous broadening is 
consistent with e.g. charge fluctuations occurring on a time-scale faster than the radiative lifetime, 
the so-called fast-modulation limit73. The crossing with 1/e (dashed line) is defined as the 
coherence time, and we find 186 ps for the XX photon and 129 ps for the X photon at this 
current density. To further characterise the behaviour and select appropriate excitation power a 
small current-dependence study was made, with results presented in figure 2.7(b). In this range, 
we measure coherence times up to 240 ps for the XX photons, and as one might intuitively 
expect the coherence time drops with increasing current density. 

 
 

 
 
Figure 2.7: (a) Single-photon fringe visibility on a semi-logarithmic scale as a function of 

time delay between the arms in the Michelson interferometer, measured at current density 70 

nA/μm2. Red and blue lines indicate exponential fits to the XX and X transitions respectively. (b) 
Photon coherence time plotted versus d.c. current density through the device. 
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Two-photon interference experiments were performed in a polarisation-maintaining fibre 
interferometer, schematically depicted in figure 2.8 below. Similar to the entanglement 

measurements (section 2.2.1.2) a spectral filter       was first used to select either the X or the 

XX transitions without narrowing the emission lines. A Mach-Zender interferometer was built 
using two 50/50 beamsplitters (BS1, BS2) with one arm delayed 2.1 ns to allow photons emitted 
at different times to meet at BS2. Using polarising beamsplitters (PBS1, PBS2) and super-
conducting single-photon detectors (SSPD1-SSPD3) co- and cross-polarised second-order 
correlations could be measured simultaneously on the output ports of BS2. A quarter-wave plate 
(WP) was used to align the measurement basis of the PBSs to the circular (R, L) basis. Detections 
registered by SSPD3 provided our “time zero” reference and co-polarised correlations 

    
   

       were measured as a function of detection time delay   between SSPD1 and SSPD3, 

whereas the cross-polarised     
   

       was recorded using SSPD2-SSPD3. 
 
 
 

 
 

Figure 2.8: Setup based on polarisation-maintaining fibre for two-photon interference 
correlation measurements in a Mach-Zender type configuration. Components include a tuneable 

filter to select either the XX or X photons (     ), 50/50 beamsplitters (BS1, BS2), a fibre delay 

line (         ), polarising beamsplitters (PBS) and superconducting single photon counting 
detectors (SSPD). A quarter-wave plate (WP) is used to align the polarisation axes of the fibre 
system and thus the detection basis to the circular basis (R, L). 

 
 
Only when photons arrive simultaneously at BS2 and are indistinguishable in every 

degree of freedom, including the polarisation, can they interfere. Consequently two-photon 
interference will manifest itself in the co-polarised correlations, while for the cross-polarised 

    
   

       the photons are perfectly distinguishable and do not interfere which provides a 
baseline with which we can compare and quantify the amount of interference. 

Figure 2.9(a) shows the measured co- and cross-polarised second-order correlation 

functions for XX input photons. The cross-polarised case     
   

       has been offset by 0.25 

for clarity. The central dip in     
   

       which goes to ~1/2 is solely due to the anti-bunched 

nature of the source, and reflects the suppression of two photons emitted simultaneously and 
then propagating down the same path of the Mach-Zender interferometer. With probability 1/2 
two photons emitted at different times can take different paths, and these account for the 

remaining ~1/2 at     
   

      . The dips to ~3/4 at ±2.1 ns are also due to the sub-Poissonian 

emitter, causing a suppressed probability of photons being emitted simultaneously and travelling 
down different paths of the interferometer. 
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Shown together with     
          are also modelled correlations, taking the above 

described ways to detect two photons into account: 
 

 

    
          

 

 
    

       
 

 
(    

              
         )  

 

(2.14) 

 

For     
       we take the numerical fits presented before in section 2.2.1.1. The blue dashed 

curve shows the calculation based on eq. 2.14 which would be observed with perfect detector 
response. The red trace shows the simulated correlations after convolving the ideal case with the 
experimentally measured detector response function (Gaussian, FWHM~140 ps). 

 
 
 

 
 
Figure 2.9: (a) Second-order correlation functions measured for co-polarised (RR) and 

cross-polarised (RL) XX photons. Cross-polarised correlations offset by 0.25 for clarity. The 
corresponding measurements for X photons look very similar and is not shown. (b) Two-photon 
interference visibility for XX photons, (c) visibility for X photons. Blue dashed curves shows 
theoretical model assuming perfect detectors, red curves shows theoretical model with the 
experimentally measured detector pair responses. 
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Now that we understand the appearance of the correlations for non-interfering, cross-
polarised photons, we can turn our attention to the co-polarised, interfering, photons. To take 
the quantum interference into account we can modify expression 2.14 using the theoretical 

coincidence probability                     | |      previously derived (eq. 2.7, section 
2.1.2). Remembering that this is a probability conditional upon the presence of two photons in 
the input ports of the interference beamsplitter BS2, we only need to change the second term in 
eq. 2.14 which represents photons in different paths of the interferometer: 
 

 
    

          
 

 
    

        

 
 

 
(    

              
         )            | |       

 

(2.15) 

 

Any interference occurring will be observed for    , and upon inspection of     
          in 

figure 2.9(a) we see that the central dip indeed extends to 0.27±0.02, much deeper than in the 
cross-polarised case. Again the blue dashed curve represents the simulated correlations for 
perfect detectors, and we can note that due to the strongly anti-bunched source the dip extends 
to zero. The red curve which takes the detector time resolution into account fits excellently to the 
experimentally measured correlations, without any free fitting parameters. Two-photon 
interference using the X photon was also performed with very similar results. The correlation 
functions look almost identical to the ones in figure 2.9(a) and are therefore not shown. 

In order to quantify our results, we define an interference visibility as 
 
  

        
    

              
         

    
         

 

 

 

(2.16) 

 
Figures 2.9(b-c) show the visibility as a function of detection time delay for XX photons (panel b) 
and X photons (panel c). For long delays the visibility is zero, i.e. the photon wavepackets do not 
interfere since they do not even overlap on the beamsplitter, but as we approach zero the 
visibility increases and reaches a maximum of 0.57±0.03 for the XX photons and 0.52±0.03 for 
X, indicating that a majority of the photons interfere when detected simultaneously. The shorter 
coherence time of the X photons manifests itself as a slightly narrower visibility peak. The 
modelling (red curves) again fits excellently to the experiments, and essentially unit visibility could 

be achieved with perfect detectors (blue, dashed curves) owing to the low     
      . 

It is a remarkable result that despite the d.c. excitation and consequently the random 
overlaps in time of photon wavepackets on BS2, the post-selected interference visibility is mainly 
limited by the photon coherence time and the detector resolution, and this has been 
demonstrated before79,80,93. However, two-photon interference with quantum dots has mostly 
focussed on charged transitions79,80,97, and in contrast here we show high levels of 
indistinguishability of photons that are part of entangled pairs. In section 2.3 we discuss the 
implications of this for quantum teleportation and entanglement swapping, and in chapters 3-4 
we demonstrate that these properties indeed are sufficient for quantum teleportation. 

 
 

  



31 
 

2.2.2 Towards a.c. generation 
 

2.2.2.1 Device characteristics in A.C. operation 
 
Arguably a larger-scale implementation of an optical quantum information machine will 

likely employ pulsed sources, so that the emission is triggered and the detection of photons can 
be synchronised and gated. This is the way that small-scale implementations of quantum logic 
with spontaneous parametric down-conversion (SPDC) sources have been realised53,85. 

Motivated by this fact a.c. operation of the ELED is explored in this section. A 
sinusoidal driving voltage of frequency 476 MHz super-imposed on a d.c. voltage was used, with 
frequency chosen to match the delay line of the Mach-Zender interferometer. Figure 2.10(a) 
shows the XX coherence time as a function of the a.c. voltage amplitude. After 0.5V there is a 
clear drop in coherence time. Examining panel (b) we can see the cause of this; at higher a.c. 
voltages a Stark-shift at a frequency comparable to the radiative lifetime is induced101, causing 
significant broadening that can be easily detected even directly in the spectral domain. To avoid 
this, we choose to work at an a.c. amplitude of 0.5V. Figure 2.11 shows the time-resolved 
electroluminescence of the XX transition at these conditions, exhibiting rather clear pulsed 
appearance. For the X photon however, we do not achieve such pulsed characteristics. The 
difference can be attributed to an overall super-linear power dependence of the XX emission, 
caused by both the non-linear IV characteristics of the diode and the quadratic power 
dependence of the XX intensity.  
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Figure 2.10: (a) Coherence time of XX photon as a function of AC voltage amplitude. 
(b) Electroluminescence spectra for 0 V ac amplitude and 1.75 V ac amplitude.   
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Figure 2.11: Time-resolved electroluminescence for the XX photon showing fairly good pulsed 
characteristics.  
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2.2.2.2 Characterising entanglement and two-photon interference 
 
The XX-X polarisation correlation and two-photon interference experiments described 

in sections 2.2.1.2 and 2.2.1.3 above were repeated under a.c. excitation conditions. Figures 2.12 
shows the resulting entanglement fidelity which is very similar to what was measured in d.c. 
conditions, reaching a peak value of 0.87 ± 0.04 (d.c.: 0.85 ± 0.01). Figure 2.13(a) on the other 
hand, showing the two-photon interference correlations, differs significantly from d.c. due to the 
modulated excitation. Several peaks separated by 2.1 ns corresponding to the pulse repetition 
period can be seen. Although they are not completely separated the valleys extend to roughly half 
of the peak values. For a high quality pulsed source with completely indistinguishable photons 

the central peak in    
       would be completely absent, since photons would always be emitted 

one by one, always arrive perfectly synchronised at BS2, and be perfectly indistinguishable over 
the whole photon wavepacket. Here we clearly have something intermediate between a d.c. and 

pulsed source; the central peak around     bears clear witness of interference in the co-polarised 
correlations, with the dip extending significantly deeper than in the cross-polarised case, but then 

as   increases    
       swings up first up, as photons are arriving either not at the same time or 

do not interfere due to decoherence, then down again as the intensity goes down. The post-
selected two-photon interference visibility of the XX photons, shown in figure 2.13(b), is slightly 
higher than in d.c., possibly due to reduced re-excitation, reaching 0.60±0.05 (d.c.: 0.57±0.04). 

 
 

 
Figure 2.12: Entanglement fidelity of the XX-X photon pair in a.c. driving conditions. 
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Figure 2.13: (a) Second-order correlation functions for XX photons in a.c. operation. (b) 

two-photon interference visibility, with a maximum of 0.60±0.05. 
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2.3 Two-photon interference, quantum teleportation and 
entanglement swapping 

 
 

2.3.1 Quantum teleportation 
 
Quantum teleportation13,14 will be described in more detail in chapters 3 and 4, but here 

we will very briefly discuss it to put the above discussed experimentally achieved entanglement 
fidelities and two-photon interference visibilities in a context and relate them to an application.  

In quantum teleportation one qubit (here a photon) is destroyed so that its information 
can be transferred to another target qubit. This is achieved by performing a joint measurement 
on the input qubit and one photon from an entangled pair (the ancilla), projecting them onto one 
of the four Bell states, with the second qubit in the entangled pair constituting the target. Two-
photon interference plays a key role in the Bell state projective measurement, since the input and 
ancilla photons are made to interfere on a 50/50 beamsplitter (see figure 2.14). 

 

 
 

Figure 2.14: Schematic of the quantum teleportation protocol. The photon carrying the 
input qubit is in mode 1 and the entangled photon pair mediating the teleportation occupies 
modes 2 and 3. The balanced beamsplitter (BS) and the detectors perform a Bell-state 

measurement, which signals successful teleportation of |  ⟩ to mode 3 when the two detectors 
click. 

Here, we simplify the picture by only considering the post-selected entanglement fidelity 
and interference visibility, and furthermore considering the two-photon state as a mixture of a 

fraction   of the ideal entangled state |  ⟩   |  ⟩  |  ⟩  √  and a fraction       
completely mixed fraction: 
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where   is the identity matrix. We can relate the constant   to the measured fidelity    through 
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In quantum teleportation we must also consider the input photon in mode 1, which is assumed 

to be in the pure state |  ⟩   |  ⟩   |  ⟩ so that the total system density matrix becomes 
 

  

              |  ⟩⟨  |       
 

 

(2.19) 

The Bell state measurement performed on the input and ancilla photons projects the modes 1 

and 2 onto the state|  
  

⟩   |    ⟩  |    ⟩  √ 14. The target photon in mode 3 is then 

projected into the state 
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(2.20) 

 
where the first term is the expected output state 
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(2.21) 

 
which is orthogonal to the input state, and differs systematically by only a unitary transformation 
(correctable with a combination of waveplates). The second term in eq. 2.20 represent completely 

mixed light in the output mode, when the entanglement “fails”. The fidelity of     to the 
expected output state is trivially 
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(2.22) 

 
The Bell-state projective measurement is a crucial step and depends on the photons interfering. If 
we take the two-photon interference used in previous sections as the probability of them 
interfering we arrive at a teleportation fidelity of: 
 

  

       
 

 
      

           

 
 

 

(2.23) 

 

This expression is intuitively reasonable; with no interference but perfect entanglement (  
 ,     ) or with perfect interference but no entanglement (   ,       ) the maximum 
fidelity is 1/2. Both interference and entanglement are needed for teleportation to be successful. 

Figure 2.15 shows the calculated teleportation fidelity as a function of entangled-pair fidelity     

and visitbility  . Taking the experimentally achieved entanglement fidelity (        ) and two-

photon interference visibility (     ) a teleportation fidelity of ~0.75 is predicted, significantly 
above the limit for no information transfer 1/2. 
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Figure 2.15: Quantum teleportation fidelity as a function of entanglement fidelity   and 

interference visibility V. The position of the experimentally achieved fidelity and visibility 

(               is marked with a black ring, and a teleportation fidelity of 0.75 is predicted. 

 

2.3.2 Entanglement swapping 
 
 

 
Figure 2.16: Schematic of entanglement swapping protocol. 

 
A similar analysis to the one in the preceding section can be applied to entanglement 

swapping, a slightly more complex protocol which is essentially the same as quantum 
teleportation, except the input photon itself is part of an entangled pair. The protocol is 
schematically drawn in figure 2.16 above. The Bell-state projective measurement on the balanced 
beamsplitter (BS in the figure) has the interesting result of creating entanglement between the 
two photons (modes 1 and 4) that did not participate in the measurement, projecting them onto 

the state |  
  

⟩   |    ⟩  |    ⟩  √ . Entanglement swapping has important applications 

in for example quantum repeaters for long-distance quantum communication networks102. 
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Repeating the analysis in complete analogy with that for teleportation, and calculating the 

fidelity of the created entangled pair onto the expected entangled output state |  
  

⟩, we get 

 
  

     (      
       

 
)  

   

 
 

 

(2.24) 

 

Figure 2.17 shows the estimated fidelity    as a function of input fidelity    and visibility 

 . By once again inserting our experimentally measured fidelities and visibilities we can estimate 

an achievable fidelity of        . This is above the fidelity of 1/2 achievable if modes 1 and 4 
were occupied by unpolarised but classically correlated photons, but it is clearly significantly more 
difficult to achieve entanglement swapping than teleportation due to the involvement of two 
entangled pairs. Considering the relatively crude simplifications made in the analysis presented 
here, we must conclude that in order to achieve convincing entanglement swapping results in a 
realistic experimental setting, more substantial improvements of the ELED would need to be 
made. 

 

 
Figure 2.17: Fidelity    of the entangled pair created in an entanglement swapping 

operation as a function of incoming photon pair fidelity   and interference visibility  . The 

position of the experimentally achieved fidelity and visibility (               is marked 
with a black ring, for which a fidelity of 0.56 is predicted. 
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2.4 Discussion 
 
In this chapter it was shown that photons from an entangled-light-emitting diode 

originating from the same excitation cycle can be entangled, with a peak observed fidelity of 
0.87±0.04, and photons emitted in different excitation cycles can interfere, with the highest 
observed interference visibility being 0.60±0.05. 

The limited exploration of a.c. driving modes illustrated the difficulty in achieving 
strongly pulsed operation with low probability of re-excitation later in the same excitation cycle, 
and to achieve highly coherent photons. The time-dependent Stark shift observed for strong a.c. 
voltages (figure 2.10) has actually been used in conjunction with narrow spectral filtering to 
achieve strongly pulsed single-photon emission80, albeit with reduced detected photon count rate 
so it cannot be considered a generally applicable method. In order to make significant progress 
towards a fast, pulsed single-photon device further engineering of the electrical device 
characteristics would be necessary, for example by making smaller area devices with lower 
capacitance103,104. 

Purcell enhancement of quantum dot emitters placed in optical cavities can be used to 
combat the problem of decoherence and improve the indistinguishability of the photons, thereby 
moving towards two-photon interference with no or minimal time post-selection or gating32,105. 
As a bonus this would also reduce the negative influence of the exciton fine-structure splitting on 
entanglement34. Resonance fluorescence106 techniques represent another interesting recent 
development and have been used to generate extremely long coherence times of up to 22 ns107, 
excellent sub-Poissonian emission107 and almost unity interference visibility108 has been 
demonstrated. These techniques are however very sophisticated and require per definition a high-
quality driving laser, making the prospect of miniaturization of devices questionable. 

The ending analysis (sections 2.3.1-2.3.2) of requirements in terms of entanglement 
fidelity and interference visibility for the quantum teleportation and entanglement swapping 
protocols indicated that teleportation with an appreciable fidelity should be feasible, while 
entanglement swapping may still be out of reach for the devices studied here. In the next chapter, 
we shall see how the ELED indeed enables quantum teleportation to be realised in a photonic 
circuit. 
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3 Quantum teleportation using a light-

emitting diode 
 
 

3.1 Introduction 
 

3.1.1 Teleporting a quantum state using non-classical correlations 
 
The so-called ‘no-cloning theorem’ states that a quantum state cannot be perfectly 

cloned. It is possible for a chosen fixed set of orthogonal states | ⟩ and | ⟩, but a cloning 

machine for arbitrary states  | ⟩   | ⟩ is not compatible with the superposition principle, a 
cornerstone of quantum mechanics109,110. This may be a complication in quantum information 
science, but it is worth pointing out that quantum key distribution (QKD) actually relies directly 
on the no-cloning theorem; since perfect cloning of arbitrary quantum states is not possible this 
makes the formation of unconditionally secure communication channels possible. Any 
eavesdropper attempting to clone (and read) qubits exchanged by two parties will by necessity 
introduce some noise on the channel, which can be detected by the legitimate parties111. 

Quantum teleportation, first proposed in 1993 by Bennett et al13, circumvents the no-
cloning theorem and permits a quantum state to be perfectly copied from one particle to another 
- regardless of their spatial separation - with the crucial caveat that the input state is destroyed 
and no information is gained about it. For this feat non-classically correlated states must be 
shared between the sender and receiver. In 1997 Anton Zeilinger’s group in Austria was the first 
to realize quantum teleportation in the lab, using photonic polarisation qubits and polarisation-
entangled photon pairs generated by spontaneous parametric down-conversion (SPDC)14. 
Following the first demonstration of quantum teleportation parts of the quantum optics 
community have been involved in a constant competition towards teleportation over ever longer 
distances both over fibre112–114 and free-space115–117 links, or making other technical improvements 
such as detecting more than one of the Bell states112,118 (and thus improving the upper limit to the 
success probability of the protocol). Fundamentally, though, the development of entangled light 
sources for all-optical experiments has been limited in the sense that modern experiments still 
rely on SPDC115,116 which suffer from multi-photon emission events54. 
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Figure 3.1: Schematic of quantum teleportation protocol. 

 
To see the basic working principle of optical quantum teleportation, consider figure 3.1 

above. Here we shall only concern ourselves with teleportation of qubits encoded on the 
polarisation degree of freedom, similar to the first implementation of the protocol14. 
Teleportation begins with the distribution of an entangled photon pair between two nodes, 
conventionally called Alice and Bob. The entangled pair occupies modes 2 and 3, and is here 

assumed to be in the Bell state |   
 ⟩   |    ⟩  |    ⟩  √  (which is also the state of the 

biexciton-exciton pair ideally emitted by a quantum dot). Alice receives the photon in mode 2 

and the input (control) photon in mode 1, which carries an arbitrary polarisation state |  ⟩  
 |  ⟩   |  ⟩ to be teleported. The joint three-photon state is then 
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   |  ⟩   |  ⟩   

|   
 ⟩
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(3.1) 

 
where in the last step the state has been re-written in the Bell-state basis of modes 1 and 2, 

spanned by the four states |   
 ⟩   |    ⟩  |    ⟩  √  and |   

 ⟩   |    ⟩  |    ⟩  

√ . In the original protocol14 Alice performs a joint measurement on the photons in mode 1 and 
2 using a 50:50 beamsplitter (BS in figure 3.1). When her two detectors register a coincidence no 
information is gained about the individual states of mode 1 and 2, but the joint state is projected 

onto |   
 ⟩. From eq. 3.1 we see that particle 3 (the target) must then be in the state |  ⟩  

 |  ⟩   |  ⟩, which differs from the input state |  ⟩ by a trivial unitary transformation, 
correctable with a waveplate. 

From the probability amplitudes in eq. 3.1 we see that this projective measurement by 
Alice only succeeds 1/4 of the time, but crucially Alice will know when it succeeds when she 
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registers a coincidence, and can signal this to Bob using a classical information channel (see figure 
3.1). It is impossible to detect all four Bell states without errors when using only linear optics, 

only |   
 ⟩ and |   

 ⟩ can be detected without ambiguity119 which limits the theoretical success 
probability to 1/2. In the successful cases Alice can feed forward to Bob the information of 
which state was detected, and he can according to Alice’s signal apply the appropriate unitary 
transformation U to ensure he will receive the correct state, without actually knowing what the 
state is13,115. In order to resolve all Bell states analysers based on non-linear optics have been used, 
although with very small success probability due to the weak non-linear effects118. 

To summarise, quantum teleportation is a method for copying quantum information 
from one qubit onto another without any involved party learning anything about the quantum 
state, and where the original copy is destroyed. The process consumes entangled resource states 
that are used to mediate the transfer through their non-local correlations, and in addition 
teleportation requires a classical communication (feed-forward) channel. As we shall see in the 
next section teleportation finds important applications in quantum information applications. 

 

3.1.2 Teleportation in quantum communication and computing 
 
If quantum teleportation destroys the input state in order to copy it onto the target qubit, 

then one may ask the question what the point of the whole operation is, especially since a 
classical message signalling success must also be sent. After all, why not just send the input qubit 
to Bob? This question naturally brings us close to one possible application: quantum 
teleportation can be used to extend the range of quantum communication networks used for 
example for quantum key distribution (QKD). Figure 3.2 shows a schematic illustrating how a 
chain of quantum relays113,120 can be used to improve the signal to noise ratio at Bob’s end; each 
quantum relay node comprises an entangled pair source and a Bell-state analyser, just as the basic 
teleportation protocol described above. It operates by performing the Bell-state measurement 
(BSM) on the input photon and one of the entangled photons, teleporting the input state onto 
the output. A heralding signal from the BSM is passed down the chain of relays, accompanying 
the qubit photon as it propagates down the link. At the end-point this heralding signal enables 
the receiver (Bob) to discard any detection events in which the signal photon was lost along the 
link, thereby achieving a higher signal to noise ratio for the events he considers. Note that a relay 
node (and the quantum teleportation protocol) can be interpreted as a quantum non-demolition 
(QND) device; a successful BSM signals the presence of a photon on the input, but the device 
allows the state to propagate to the output un-harmed and without reading the state. Quantum 
relays have been implemented in some variations, for example using weak pulses of down-
converted photon pairs113, down-converted CW laser photons121 and using telecom-band photons 
generated through four-wave-mixing in fibres122. 

 

 
 
Figure 3.2: Operation principle of a chain of quantum relays linking Alice and Bob. 
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While the quantum relay described above can improve the SNR of the communication by 
heralding the successful transmission of the qubit, it does not correct for decoherence of qubits 
along the transmission line and it does not improve the overall signal strength (qubit rate) at the 
receiving end. The quantum repeater addresses both of these problems102,123. The initial goal for a 
communication channel using quantum repeaters is to establish entanglement between the sender 
and receiver. This is done in a nested fashion, first for the nearest neighbour repeater nodes and 
then further and further afield. To this end, each station in the network must be equipped with a 
high fidelity, high efficiency quantum memory (QM), an entangled light source and a Bell state 
analyser. All of these components are extremely challenging to implement with today’s 
technology, with the quantum memories being perhaps the main challenge, but some progress 
has been made using single atom memories124, cold atom gases125, quantum dots36 and NV-
centers18. Prototypical quantum repeaters for single photon qubits have been implemented126,127, 
but still the quantum relay at the moment appears to be a much more feasible endeavour. 

Teleportation also plays a central role in linear optics quantum computing 
proposals84,128,129 as it allows the realisation of quantum logic gates with success rates arbitrarily 
close to one129. Provided that one can implement a set of universal gates, such as single-qubit 
rotations plus a two-qubit gate such as the CNOT gate (which flips one qubit, ‘target’, dependent 
on the state of another qubit, ‘control’), one can in principle implement any multi-qubit unitary 
transformation, i.e. one can construct a quantum algorithm130. Two-qubit gates present significant 
challenges since photons do not interact with each other, and nonlinear optical processes that 
could provide the interaction are very weak and inefficient. With linear optics components two-
photon interference can provide our “interaction”, which allows for example the CNOT gate to 
be realised68,131. Unfortunately, such two-qubit gates are probabilistic with limited success 
probability which renders them not scalable, but luckily sacrificial single-photon ancillae can at 
least tell us when the gate succeeded. Gottesman and Chuang introduced the concept of 
“teleporting the qubits through the gate” to make the gates in principle deterministic84. The 
principle is schematically shown in figure 3.3. The CNOT gate is repeatedly applied on qubits 

(modes 3 and 4) from two entangled pairs (|   
 ⟩ and |   

 ⟩) until it succeeds, after which the 

control |  ⟩ and target |  ⟩ qubits are teleported onto the CNOT output qubits    and   . With 
just a few single-qubit rotations (X, Z in the figure) dependent on the feed-forward from the 
Bell-state measurement devices the two qubits emerging at the very end (7-8) will be in the 

desired state     |   ⟩. This type of gate has been elegantly demonstrated using SPDC 
sources and free-space optics53. 

 

 
 
Figure 3.3: Schematic drawing of a teleportation-based CNOT gate, incorporating a 

probabilistic CNOT gate repeatedly applied on entangled resource states until success, after 
which the control and target qubits are teleported onto the output modes. After a series of single-

qubit rotations (X, Z) the intended output state     |   ⟩ emerges. 
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As seen from the above examples, quantum teleportation is a very important primitive 
for quantum information applications in the way it builds on a combination of entanglement, 
quantum interference effects and measurements to create desired qubit operations. In addition, it 
is perhaps one of the most striking manifestations of non-local correlations and arguably 
something that is expected to be demonstrated for an entangled light source. In this chapter we 
shall see how the two-photon interference and entanglement properties presented in chapter 2 
were brought together to implement the first photonic quantum teleporter with an electrically 
driven light-emitting diode132. 
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3.2 Experimental 
 

3.2.1 Fibre-based teleporter 
 
We implement our teleportation circuit using single-mode fibre components and the 

entangled-light-emitting diode (ELED)59, already shown to be capable of generating high fidelity 
entangled photons with appreciable degrees of interference (chapter 2 and Stevenson et al133). 
The setup is schematically drawn in figure 3.4 below. The light from the ELED is coupled to the 
single mode fibre and passed through a tuneable transmission grating filter (F) separating the X 
and XX photons from the rest of the emission, without reducing their bandwidth. As described 
in the previous section, teleportation begins with the distribution of entangled photons between 
two parties Alice and Bob. Using a 50/50 beamsplitter (BS1) we distribute half of the XX 
photons to Alice. These photons are termed the ancillae (XXa) and will mediate the teleportation. 
The other half of the XX photons, called control photons (XXc), are sent down the other arm of 
the setup and prepared in a desired polarisation state using a polarising beamsplitter (PBS1) and 
an electronic polarisation controller EPC1. The control photons XXc carry the state to be 
teleported. The state preparation arm also incorporates a delay of 2.5 ns to allow photons from 
different excitation cycles of the quantum dot to meet at BS2. It should be pointed out that 
although the control photon in this experiment originates from the same source as the ancilla, 
and is prepared in the same circuit, the teleportation protocol is in principle compatible with 
independent sources. This will be demonstrated in chapter 4. 

 

 
Figure 3.4: Schematic of the fibre-based teleportation setup, with ELED, spectral filter 

(F), 50/50 beamsplitters (BS), polarising beamsplitters (PBS), electronic polarisation controllers 
(EPC), superconducting single-photon detectors (SSPD), avalanche photodiodes (APD). Alice 
performs a Bell-state projective measurement on the control photon (XXc) and the ancilla (XXa) 
entangled with the target photon (Xt) received by Bob. 
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Alice receives both ancilla XXa and target XXc, and performs a joint measurement on 
them using a second beamsplitter (BS2) and superconducting single-photon detectors (SSPDV, 
SSPDH) set to measure polarisations H and V using polarising beamsplitters PBS2, PBS3 and 
electronic polarisation controllers (not shown). A coincidence registered by Alice signals a 
successful Bell-state measurement, projecting the ancilla and control photons onto the Bell state 

|   
 ⟩   |    ⟩  |    ⟩  √ . The X photon, or target (Xt), forms an entangled pair together 

with the ancilla XXa, and is sent to the receiver Bob. Bob is in possession of two APDs 
interrogating the polarisation state of Xt in the polarisation basis P-Q (with P orthogonal to Q) 
using PBS4 and EPC2 to set the basis.  

Experimentally, fast correlation electronics are used to record three-fold detections 
events (SSPDH-SSPDV-APDP and SSPDH-SSPDV-APDQ), with all detection times registered 
relative to detections by Alice’s detector SSPDH. We call the time delay between Alice’s detectors 

SSPDH-SSPDV   , and    signifies the relative detection time of either of Bob’s detectors 
(SSPDH-APDP or SSPDH-APDQ). The time resolution of the detector pairs was measured to be 
SSPDH-SSPDV: 103 ±3 ps, SSPDH-APDP: 365±7 ps, SSPDH-APDQ: 327±1 ps. In reality, the 

target Xt photons are delayed in fibre by ~55 ns, but since the origin of    is arbitrary we choose 
it to coincide with the maximum output fidelity for clarity of the presentation.  

To evaluate the performance of our ELED we perform teleportation for six control 
photon polarisations distributed over the Poincare sphere as shown in figure 3.5, chosen to 
represent teleportation of a general qubit state. For each input, Bob’s polarisation basis P-Q is set 
to the expected output basis, and we simultaneously record third-order correlation functions 

    
           and     

          . This allows us to evaluate the fidelity of the detected photons to 

the expected output state as 
 
 

          
    

   
       

    
               

          
 

 

 

(3.2) 

 

 
Figure 3.5:Poincaré sphere with the six input states used in the teleportation experiment. 
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3.2.2 Properties of the entangled light-emitting diode 
 

The ELED was operated at 93 nA/μm2 d.c. current in a liquid helium cooled cryostat at 
~15K. The quantum dot spectrum, shown in figure 3.6(a) is dominated by the X and XX 

photons and we verify the fine-structure splitting of the X state to be 2.0±0.2 μeV (see section 
2.2.1.1). For successful teleportation the source must provide photons of high quality; 
teleportation relies on two-photon interference on BS2, which requires long photon coherence 
times, and accidental multiple photons can cause false detections lowering the overall 
teleportation fidelity. At the chosen operating conditions the XX coherence time is measured to 
be 161±4 ps, and we verify the sub-Poissonian emission character using a Hanbury-Brown-Twiss 

interferometer, with resulting second-order correlation functions         shown in figure 3.6(b) 
for the X and XX photons respectively. The measurements reveal an almost perfect anti-bunched 
behaviour, with the minimum values (X: 0.096±0.010, XX: 0.105±0.008) being explainable with 
the finite time response of the detectors used. In contrast, photons from parametric down-

conversion sources conventionally used in teleportation experiments14,115,118 have a          . 
Accidental errors from multiple pairs are one of the main limiting factors in multi-photon 
experiments53 and limits the scalability of SPDC-based quantum information schemes. 
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Figure 3.6: (a) Electroluminescence spectrum from the identified quantum dot, operated 

at 93 nA/μm2 and ~15K. (b) Second-order correlation functions of the X and XX transitions 
measured using a Hanbury-Brown-Twiss interferometer. 

 
We investigate the entanglement properties of the XX-X photon pairs emitted by the 

ELED at the chosen operating conditions in the same way as described in section 2.2.1. Figure 

3.7 shows the measured polarisation correlations as a function of XX-X detection time delay   in 
the rectilinear basis (H-V, panel a), diagonal linear basis (D-A, panel b) and circular basis (R-L, 
panel c). To quantify the results we calculate the degree of correlation C in each basis (see 
equations 2.10-2.11), with results shown in figure 3.8(a). In agreement with what is commonly 
observed for this type of dot we find stronger correlations in the circular and rectilinear bases 
than in the diagonal basis. As discussed in chapter 2 this can be attributed to the FSS of the 
exciton state and nuclear polarisation fluctuations in the quantum dot. The degree of correlation 
(figure 3.8(a)),  in these three polarisation bases allows us to calculate the fidelity to the ideal Bell 
state (figure 3.8(b)), with a maximum of 0.777±0.005, confidently above the classical limit of 0.5. 
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Figure 3.7: Polarisation correlations of d.c. electrically excited quantum dot ELED. XX-X 

correlations measured in (a) rectilinear basis H/V coinciding with the basis of the X eigenstates, 
(b) diagonal, linearly polarised superposition basis D/A, (c) circular polarisation basis R/L. 
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Figure 3.8: (a) Degree of correlation based on polarisation correlation measurements 

(figure 3.7). (b) Entanglement fidelity of the XX-X biphoton polarisation state used for 
teleportation. 
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3.2.3 Teleporting polar states 
 

Of the six control photon states used to test the performance of our teleporter, the two 
polar states H and V, i.e. the input states that coincide with Alice’s measurement basis and the 
quantum dot exciton eigenbasis, can be considered to be a special case. They do not require 
interference between the ancilla and the control photons, and they can be “teleported” without 
entanglement. To see why, consider the setup in figure 3.4 again, but let the control photon 
(XXc) polarisation be restricted to H and V (but random for these): for each of Alice’s pair-
detections she knows due to the polarisation-resolved detection that the ancilla and the control 
photon were of opposite polarisations. Furthermore, if the photon pair source is correlated but 

not entangled, i.e. the ancilla and target photons are emitted in a statistical mixture of |    ⟩ and 

|    ⟩, she can be certain that if the control was V, the target must have been H, and if the 
control was H, the target must have been V. In other words, when Alice signals a coincidence 
Bob only has to apply a polarisation rotation of 90 degrees and can be certain to receive the 
correct state. 

Figure 3.9 shows the experimentally acquired third-order correlations obtained for control 

state H when Bob detects V (    
          , panel a) and H (    

          , panel b) respectively. 

Many features originating from the quantum light source characteristics are visible: the vertical 

dip visible at      originates from the suppressed probability of having two XX photons 
emitted simultaneously and passing down the same arm of the interferometer. Similarly, the 

vertical dark stripe at         ns corresponds to a suppression of two XX photons emitted at 
the same time with the photon detected by SSPDV having come down the short arm and the one 
detected by SSPDH having arrived through the long arm.  

 

 
 

Figure 3.9: Third-order correlation functions for control H and (a) Bob measuring V, (b) 
Bob measuring H. One-dimensional cut through third-order correlation for (c) Bob measuring V 
and (d) Bob measuring H.  
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The horisontal dark stripes at      in figure 3.9(a) and the horisontal bright stripes at      
in figure 3.9(b) can be explained by the polarisation correlations between XXa and Xt photons: 

Since    measures the detection time difference between the target Xt photon and SSPDH, Xt 

photons detected at      “belong” to the XXa photon measured to have polarisation H. 
Consequently, for target V (figure 3.9(a)) we get a suppression and for target H (figure 3.9(b)) we 
get an increase, consistent with polarisation correlations showing a high degree of XX-X co-
polarisation in the rectilinear basis (see figure 3.7(a) in the previous section). Similarly the 

horisontal stripes at         ns originate from correlations between the control photon and 
the target photon, and can be considered artefacts that have no impact on the teleporter 
performance and can thus be safely ignored. 

On the diagonal in figures 3.9(a) and (b) we have      , i.e. the target photon is detected 
simultaneously with the photon detected by SSPDV. Hence, the polarisations are correlated but 
reversed compared to the horisontal stripes, i.e. target H is suppressed (dark stripe, panel b) while 
target V is enhanced (bright stripe, panel a). 

Quantum teleportation of a general state only succeeds when Alice detects a coincidence, 

i.e.     . The lower panels in figure 3.9 show cross-sections through the third-order 

correlation functions for Bob detecting V (    
             in panel c) and H (    

       
      in panel d) respectively. Only when the target photon is correlated with the ancilla, i.e near 

    , can general teleportation succeed. Comparing the two traces in this region we clearly see 
that Bob receives mainly V photons as expected from the three-photon state in equation 3.1 in 
the beginning of this chapter.  

Figure 3.10 shows the fidelity             of the detected photons to the expected target 

state V as a function of Alice’s (  ) and Bob’s (  ) detection times in panel b. In most parts of 
the figure the fidelity is close to 1/2, i.e. the target photon polarisation is completely random. But 
a clear diagonal stripe with higher fidelity runs all the way through the two-dimensional plot. This 
expresses what was qualitatively discussed above: two-photon interference is not required for the 

polar states, so the fidelity can be above 1/2 even where     . As we shall see in the next 

section, teleportation of arbitrary states is only successful when     , so for a general 
teleporter this is the region of interest. Figure 3.10(a) and (c) show cross-sections through the 

two-dimensional fidelity map for      and      respectively with a peak fidelity of 
0.802±0.035. 
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Figure 3.10: (a) Fidelity      as a function of   when Alice registers coincidences 

(    ). (b) Fidelity as a function of Alice’s detection time (  ) and Bob’s detection time (  ). At 

        we find fidelity 0.802±0. (c) Fidelity as a function of Alice’s detection time only, 

when     .  

 
The teleporter was evaluated also for the second polar state V, with resulting 

    
           and     

           shown in figure 3.11 (a) and (b) respectively. Similar to what was 

observed for H input, we find a central vertical dip extending through the plots, owing to the 
sub-Poissonian nature of the XX emission. Likewise a second dark vertical stripe is visible, this 

time at         ns instead of negative times, since now it is SSPDH instead of SSPDV that is 
“blind” to the control state preparation arm of the setup. For the same reason only one 
horizontal feature is visible, whereas two diagonal stripes are visible. The horizontal stripes 
extending through the whole figure, showing suppression for target V (panel a) and enhanced 
detection for target H (panel b), shows also for this polar input state that interference is not 
needed. Polarisation correlations are needed though, although classically correlated photons in 

the H-V basis would suffice. Figure 3.11(c) and (d) show cross-sections through the             

functions for     , highlighting the fact that for control V, Bob measures predominantly H 

when     . Just as for input H we quantify how well the teleportation process works by 

calculating the fidelity             according to equation 3.2. The resulting two-dimensional 
map is shown in figure 3.12(b), with cross-sections through the origin shown in panels (a) and 

(c). A streak of high fidelity runs horizontally along    at      as expected from the measured 
third-order correlations, and we find fidelity 0.833±0.027 at the origin. The fidelity remains ~1/2 
for most other times. The relatively strong, positive diagonal trace offset by -2.5 ns is due to 
correlations between control and target photons but, it must be stressed again, has no impact on 
the teleportation of general input states, for which we will focus on the origin only. 

 



51 
 

 
 

 
Figure 3.11: Third-order correlation functions for control V and (a) Bob measuring V, (b) 

Bob measuring H. One-dimensional cut through third-order correlation for (c) Bob measuring V 
and (d) Bob measuring H. 

 
Figure 3.12: (a) Fidelity      as a function of   when Alice registers coincidences 

(    ). (b) Fidelity as a function of Alice’s detection time (  ) and Bob’s detection time (  ). At 

        we find fidelity 0.833±0.027. (c) Fidelity as a function of Alice’s detection time only, 

when     .  
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3.2.4 Teleporting superposition states 
 
The results in the previous section, for teleportation of control states coinciding with 

Alice’s measurement basis and the X eigenbasis, represent two special cases as already pointed 
out above, since they do not require interference and also no entanglement between XX-X pairs 
(but at least classical correlations). To fully characterise quantum teleportation with the 
entangled-light-emitting diode four more states were teleported, corresponding to the maximal 
superposition states located on the equator of the Poincaré sphere (figure 3.5); diagonal/anti-

diagonal in the linear diagonally polarised basis (|     ⟩   |  ⟩  |  ⟩  √ ) and right- and left 

circularly polarised (|     ⟩   |  ⟩   |  ⟩  √ ). These states, in contrast to H/V, require 
both quantum interference and entanglement and are therefore more challenging. 

Figure 3.13(a) and (b) show the measured third-order correlation functions     
           

and     
           respectively, for control photon state A. As for the polar states, the vertical 

dark streak extending through the figures at      is due to suppressed probability of having 
two XX photons emitted simultaneously and travelling down the same arm of the fibre setup, 
owing to the excellent sub-Poissonian behaviour demonstrated previously in figure 3.6. This time 

two adjacent dark streaks at         ns can be seen, coming from suppression of two photons 

emitted simultaneously into different arms of the teleporter. Horizontal lines at      originate 
from correlations between ancilla XXa and target Xt photons, when the XX photon is detected by 
Alice’s detector SSPDH, the “time reference” detector. Similarly, diagonal features through the 
origin are due to XXa-Xt correlations when the XX photon goes to Alice’s SSPDV. The 
horizontal and diagonal features going through the origin are of similar magnitudes in figure 
3.13(a) and (b), as an A or D photon detected by Bob has approximately the same probability to 
be correlated with a H or V photon detected by Alice. Streaks offset by -2.5 ns can be safely 
ignored as they bear no influence on the teleportation, originating as they do from correlations 
between control and target photons, and can be considered an artefact of using the ELED also 
for control photon generation. 

At the origin, when        , one can not discern which of the two photons detected 
by Alice (the one detected by SSPDH or by SSPDV) Bob’s target photon is correlated to. This is 
where interference between the two XX photons can take place, and Alice’s measurement 
effectively performs the Bell-state projection. The effect is visible upon comparison of the origin 
of figures 3.13(a) and (b), with the diagonal streak extending through the origin only in panel (b) 

when Bob detects D. The width in   -direction of the area of interest is narrow, which is 
expected since quantum interference between ancilla XXa and control XXc can only occur within 
the XX coherence time of 161 ps. Figure 3.13(c) and (d), showing cross-sections through the 

    :s for coincident detection by Alice (    ) also highlights that Bob predominantly receives 

D polarised photons when     . This signifies teleportation of the superposition state A onto 
D, as expected from the three-photon state in equation 3.1 in section 3.1.1. 

Figure 3.14(b) shows the fidelity of the detected target photons onto D as a function of 

the detection times,            . At the origin a bright spot is visible, standing out with a peak 
fidelity of 0.718±0.026 against the background of ~1/2 surrounding it. The cross-sections, 

plotted in figure 3.14(a) as a function of Bob’s detection time   , and in 3.14(c) as a function of 

Alice’s detection time   , show peaks limited by the XX-X polarisation correlations in    and the 

XX coherence time in   . 
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Figure 3.13: Third-order correlation functions for control A and (a) Bob measuring A, (b) 

Bob measuring D. One-dimensional cut through third-order correlation for (c) Bob measuring A 
and (d) Bob measuring D.  

 
Figure 3.14: (a) Fidelity      as a function of   when Alice registers coincidences 

(    ). (b) Fidelity as a function of Alice’s detection time (  ) and Bob’s detection time (  ). At 

        we find fidelity 0.718±0.026. (c) Fidelity as a function of Alice’s detection time only, 

when     .  
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Teleportation of control qubits in the circular basis (R, L) qualitatively speaking appear 
very similar to results in the diagonal superposition basis (D, A). Figures 3.15(a) and (b) show the 

measured correlation functions     
           and     

           respectively, together with 

associated cross-sections along      (panels c, d). The main difference here compared to the 
diagonal and polar states is that the output state is the same as the control state, i.e. L teleports to 
L, as is expected from equation 3.1. That Bob mainly receives L polarised photons when the 
teleportation succeeds is manifested in figure 3.15(a) in which the diagonal and horisontal stripes 
extend through the origin, and in figure 3.15(b) as a notable absence of detections at the origin. 
The same effect is illustrated in figure 3.15(c) and (d), plotting cross-sections through the origin 

along “Bob’s time axis”   . The fidelity      is shown in figure 3.16. Similar to A input (figure 

3.14) successful teleportation occurs only for three-fold coincidence (       ), here with a 
fidelity of 0.646±0.035. 

 
  

 

Figure 3.15: Third-order correlation functions for control L and (a) Bob measuring L, (b) 
Bob measuring R. One-dimensional cut through third-order correlation for (c) Bob measuring L 
and (d) Bob measuring R.  
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Figure 3.16: (a) Fidelity      as a function of   when Alice registers coincidences (   
 ). (b) Fidelity as a function of Alice’s detection time (  ) and Bob’s detection time (  ). At 

        we find fidelity 0.646±0.035. (c) Fidelity as a function of Alice’s detection time only, 

when     .   
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3.2.5 General teleportation and classical limit 
 
Teleportation was performed for in total six states evenly distributed over the Poincaré 

sphere, with two polar states and four superposition states on the equator. The individual 
measured fidelities were 0.802±0.035, 0.833±0.027, 0.574±0.035, 0.718±0.026, 0.646±0.035 and 
0.650±0.032 for control qubit states H, V, D, A, R and L respectively. We have already noted 
that the polar states H and V do not require entanglement or interference, and this explains the 
higher measured fidelity for these states. We can also note that all states have a fidelity 
significantly above 1/2, the limit for no information transfer (completely random measurement 
outcomes for Bob). The fidelities in the circular basis are equal within experimental error, but in 
the diagonal basis D has significantly lower fidelity than A. We attribute this asymmetry to weakly 
polarising elements in the setup that cause slight misalignments of the calibrated polarisations. 
This can also be seen in figure 3.14(b), where a weak diagonal streak is visible. However, 
simulations show that the effect on mutually orthogonal states (such as D and A) largely cancels 
out (modelled by K.H.A. Chan for ref. 132). Indeed we can see that the average fidelity for D-A is 
0.646±0.022, very similar to the average in the circular basis which is 0.648±0.024. 

In the context of quantum teleportation of general qubit states, discussing individual 
states is not very meaningful. For example, if the control photons are restricted to one 
orthogonal basis, faithful “teleportation” with perfect fidelity is achievably if Alice just aligns her 
detection apparatus to this basis and shares classically correlated photons with Bob. Such a 
scheme requires neither interfering particles nor non-classical correlations. With a theoretical 
analysis it can be shown that for a classical teleporter equipped with the best possible general 
measurement device (positive operator-valued measurement, POVM device), the best achievable 
average fidelity is 2/3 for the six states considered here (proof by Marco Lucamarini, see 
supplementary information of ref. 132). This result can also be understood intuitively; if Alice can 
achieve unit fidelity for the polar states on the Poincaré sphere by sharing only classically 
correlated photons, the outcome will be completely randomised for the diagonal and circular 

superposition states. The average fidelity is thus                  . Note that if the 
tested input states are restricted to only four states the classical upper bound must be adjusted 
accordingly to 3/4134. 

To prove non-classical behaviour the appropriate thing for the experiment here is thus to 
consider the average fidelity for our six control photon input states, which is shown in figure 

3.17(a) below as a function of    and   . A single high fidelity spot around         is visible, 
with a peak value of 0.704±0.016 which represents teleportation of general qubit states for three-
fold coincidence. This fidelity beats the classical limit of 2/3 by 2.2 standard deviations and 
proves that quantum teleportation is taking place. The quoted error includes the Poissonian 
counting statistics (1.2%), uncertainty due to calibration of the time measurement apparatus 
(0.5%) and error due to polarisation misalignments (less than 1%). Figure 3.17(c) shows a cross-

section at     , and similar to the individual superposition state fidelities the peak is narrow in 

   direction, limited by the imperfect quantum interference between ancilla and control photons 
determined by the XX photon coherence time. A simulated average fidelity is also shown (red 
lines), with a predicted fidelity of 0.712 and good general agreement with experimentally 
observed peak shapes. The model upon which these calculations are based was further developed 
for dissimilar input photons as described in detail in section 4.3.2. 
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Figure 3.17: (a) Average fidelity for states H,V,D,A,R and L, as a function of Alice’s (  ) 

and Bob’s detection time (  ). When Alice registers a coincidence (    ) and Bob 

simultaneously registers a detection (    ), the average fidelity is 0.704±0.016 beating the 

classical limit of 2/3. (b) Cross-section through the two-dimensional fidelity map taken at      

(c) Cross-section through the two-dimensional fidelity map taken through     . Solid red 
curves in (b) and (c) is the modelled average fidelity (courtesy of K.H.A. Chan). 
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3.3 Conclusions 
 
The results represents in this chapter represent the first realisation of a quantum 

teleporter based on electrically generated light from a quantum dot emitter. Teleportation was 
evaluated for six input polarisations, representing teleportation of a general qubit state, and was 
found to beat the classically achievable average fidelity. The fidelities of the individual states were 
asymmetrically distributed with the polar states H and V the highest since they do not require 
two-photon interference in Alice’s beamsplitter. As they only rely on polarisation correlations 

they are mainly limited by the entanglement fidelity and the time coincidence window in    (183 
ps). It was also found that the diagonal basis had elevated fidelity for A, and suppressed fidelity 
of D, while R and L had roughly the same fidelities. This is a side-effect attributed to weakly 
polarising elements such as the spectral filter and couplers in the fibre setup, but does not affect 
the average quantum teleportation fidelity appreciably (less than 1%). 

Teleportation of superposition states requires successful quantum interference between 
ancilla XXa and control XXc. This is limited by the time resolution of Alice’s detectors (103 ps) 
relative to the XX coherence time (161 ps), and the width post-selected time window (110 ps). 
Further improvements can be achieved with faster detectors, or – which will most likely be 
required for quantum information applications – developing entangled light sources with longer 
coherence times and/or shorter radiative lifetimes, approaching transform limited photons32. 
Shorter lifetimes can be achieved with Purcell enhancement by placing the dot in an optical 
cavity, which will also have the advantage of reducing the detrimental effect of exciton fine-
structure on the entanglement fidelity34. With further improvements such as these the device 
could become a useful component in quantum information applications. 

Although the fibre setup used in the experiments presented here prepared the input 
photons to be teleported using light from the same device as the entangled photons, it is in 
principle compatible with independent sources. In the next chapter we shall see how the setup 
was modified to accommodate an independent source of vastly different character and perform 
quantum teleportation of laser generated photons using the entangled-light-emitting diode. 
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4 Teleporting weak coherent states using a 

quantum entangled light source 
 
 

4.1 Introduction 
 
Quantum computing promises great power for solving certain problems in engineering 

and science135,136. With the research efforts still not close to the realisation of a useful quantum 
computer it is not clear what architecture will eventually be successful137. Intense work on 
different systems such as trapped as ions138, NV-centres in diamond139, semiconductor quantum 
dots140 or atomic spins in silicon141,142 are on-going. For long distance quantum communication on 
the other hand optical communication seems to be the by far most likely contender, as fibre 
optics already today forms the backbone of our long-distance communication infrastructure and 
photonic qubits are relatively robust to decoherence. Interfacing photonic qubits from a 
communication network with the above mentioned matter systems will require quantum 
teleportation protocols to transfer the information, and matter-light teleportation has for some of 
these systems been demonstrated143,144. Linear optics remains another attractive architecture to 
implement  quantum logic83,128,145, and similarly it would require all-optical teleportation53,84,129. It is 
conceivable that the input photon then is likely to originate from a dissimilar source to that 
supplying the entangled resource states. The most common source used by classical and quantum 
optical communication systems is the laser, but surprising as it may seem linear optics 
teleportation of an independent laser input has never been performed (it should however be 
noted that it has been done with non-linear optics based Bell-state measurement device, 
operating with extremely low success probability owing to the weak non-linear processes118). In 
fact, every demonstration so far of teleportation using linear optics use the same14,134 or 
identical121,146 sources for the input and entangled photons, often accompanied by a fourth 
heralding photon146, making them impractical for general quantum networking. 

In this chapter we build upon the work of the previous chapter and demonstrate optical 
teleportation of photons directly generated by a laser, mediated by a polarisation-entangled 
photon pair electrically generated by the entangled-light-emitting diode (ELED)59. The light 
sources differ considerably in character; in bandwidth by a factor ~100, and while the photon 
statistics of the laser is Poissonian the ELED produces characteristically sub-Poissonian light. 
This is a step towards practical applications such as extending the range of existing QKD systems 
(typically based on weak coherent laser pulses) using quantum relays 120 and repeaters 102. 
Furthermore, the ELED offers practical advantages of electrical control, and as we show it erases 
the multi-photon character of the laser input field, thus eliminating errors if used in a quantum 
optics circuit. 

As described in the previous chapter, linear optics quantum teleportation requires Hong-
Ou-Mandel (HOM) type interference32,87, usually realised using a 50:50 beamsplitter, between the 
input qubit and one ancilla photon from an entangled photon pair13,14. Here, we interfere our 
photons on a strongly unbalanced (95:5) beamsplitter to achieve quantum teleportation of the 
polarisation state carried by input photons from a CW laser. The large coupling imbalance allows 
us to make efficient use of the photons produced by the quantum dot emitter. 
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All experiments in this chapter are carried out using the same electrical excitation 

conditions as in chapter 3, i.e. at ~15 K and with a d.c. current of ~90 nA/μm2, under which 
conditions the XX coherence time is 161 ± 4 ps, corresponding to a linewidth of 

    ⁄        . In comparison the laser has a linewidth of ~50 neV. 
To verify that interference does take place on the somewhat unusual unbalanced coupler, 

we start this chapter by demonstrating quantum interference experiments with it (section 4.2). 
The experiments also allowed us to do direct observations of quantum beats between photons 
originating from the laser and the quantum dot, something that has previously only been done 
with extremely long photon wavepackets from atomic transitions147,148. 

After having verified that interference is indeed taking place the attention is turned to 
quantum teleportation experiments (section 4.3), including density matrix measurements (section 
4.3.3.4) characterising the output state more carefully than what was done in chapter 3. 
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4.2 Quantum beats between dissimilar photons 
 

4.2.1 Experimental setup 
 
Before proceeding to the quantum teleportation experiments, we verify the two-photon 

interference of our dissimilar light sources on the unbalanced beamsplitter using the setup 
illustrated schematically in figure 4.1. The setup is implemented using single mode fibre 
components and single-photon counting detectors. XX photons from the ELED are selected 
using a transmission grating filter, then polarised and fed into input port 1 of the unbalanced 95:5 
beamsplitter, which couples with 95% efficiency to output mode 3. The CW laser is also 
polarised and then fed to input port 2 with coupling 5% to port 3. Mode 4 goes to a 
spectrometer and allows us to monitor and computer control the emission wavelength of the 

laser, and thus the detuning    of the laser and ELED, which is estimated to be controlled with 

a precision of ~5 μeV. Using a balanced beamsplitter (50:50) at port 3 we measure second-order 
correlations using detectors D1 and D2 for co-polarised (interfering) and cross-polarised (non-
interfering) inputs. With computer controlled fibre-based polarisation controllers the 
polarisations of the sources is switched between co- and cross-polarised periodically during data 
acquisition. 

 
Figure 4.1: Schematic of fibre-based experimental setup for two-photon interference on a 

95:5 beamsplitter between a laser photon and XX photons from an entangled-light-emitting diode 

(ELED). The ELED couples from port 1 to 3 with efficiency            and the laser couples 

from 2 to 3 with probability           . The sources couple with reversed probability to 

output mode 4, which is sent to a spectrometer for monitoring of the sources’ detuning  . 
Bunching of photons in output 3, the signature of interference, is observed using a 50:50 
beamsplitter and superconducting single-photon counting detectors D1 and D2. 
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4.2.2 Modelling two-photon interference of dissimilar sources 
 

In order to arrive at a model for the two-photon interference experiments presented in 
this chapter we follow the model presented in chapter 2 closely, but do some modifications to 
account for the dissimilar photon sources and the unbalanced beamsplitter. 

For the unbalanced beamsplitter in figure 4.1 the mode creation operators   
 
 for the 

input ports (1,2) and output ports (3,4) can be related according to the convention98: 
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(4.1) 

 

which means that the coupling ratios are            from port 1 to 3 and             
from port 2 to 3. 

The photons emitted by the quantum dot are modelled as exponentially decaying 
wavepackets with random phase fluctuations due to decoherence processes (see sections 1.4.3 
and 2.1.2), and furthermore they are considered to be fed to port 1 (see setup in figure 4.1): 

 
 

      {
                                

       
 (4.2) 

 
The laser, on the other hand, is a CW laser in port 2. Initially we consider the laser to have 

Gaussian wavepackets of width  : 
 
                

    ⁄       (4.3) 

 
The laser employed in the experiments is a CW laser with coherence length much longer than the 
XX photons it is interfering with, so the approximation of a very wide Gaussian wavepacket 

(    ) can be justified. A variable time delay    is included to model the random arrival time 
differences of the photons due to the d.c./CW nature of the experiment. The possible detuning 
of the sources is modelled by having different central frequencies of the two wavepackets, 

           . 
Let us call the creation operators of the output ports of the 50/50 splitter in figure 2.8 

going to detector D1  ̂ 
 
 and detector D2  ̂ 

 
. These operators are easily related to the output 

port 3 of the unbalanced beamsplitter through   
    ̂ 

   ̂ 
   √ . The probability to have 

detections by detector D1 at time   and D2 at time    , similar to eq. 2.5 in chapter 2, can be 

calculated with the electric field operators at detectors D1 ( ̂  
    ) and D2 ( ̂  

    )74: 
 
             ⟨    | ̂  

     ̂  
       ̂  

       ̂  
    |    ⟩  

 |⟨ | ̂  
       ̂  

    |    ⟩|
 
 

 

(4.4) 

 
  



63 
 

Through the beamsplitter relations we can transform this to the electric field operators at input 
ports of the system (ports 1, 2 of the unbalanced splitter): 
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(4.5) 

 

When writing |    ⟩ we explicitly ignore the possibility of detecting two photons from one 
source, i.e. either in mode 1 from the quantum dot, or in mode 2 from the laser. This means we 
can drop the first and the last terms in the above expression. Then, by making the same 
assumption as in section 2.1.2, i.e. that the modes 1 and 2 are restricted to specific spatio-
temporal mode functions defined in equations 4.2 and 4.3, we get: 
 

 
            

           

 
 |                         |  

 

 

(4.6) 

 
Equation 4.6 above is very similar to what we had in eq. 2.7 of section 2.1.2, but has new pre-
factors reflecting the fact that we are using an unbalanced beamsplitter and a 50:50 splitter on the 
output (mode 3) to observe the photon statistics. The interference factor differs in that the mode 
functions are reflecting dissimilar sources and also in that it has a positive sign owing to the 
detections being made in the same output arm of the interference beamsplitter (95:5). 

Integrating over the detection times of D1 ( ) and the arrival time of the laser photon 

(  ), then letting the Gaussian wavepacket become infinitely long (   ), we arrive at the 
detection probability we are interested in: 
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(4.7) 

 

where    is the coherence time of the XX photons and    is the XX to laser energy detuning. 
Compared to eq. 2.7 of section 2.1.2 equation 4.7 above has a sign change, reflecting the fact that 
we are observing the effect of interference in the same output arm of the beamsplitter (95:5) 
instead of opposite outputs, meaning that interference will manifest itself as bunching of 
photons. Also, an oscillating factor is present, indicating that we should be able to observe 
quantum beats if the sources have a non-zero detuning, provided that our detectors can resolve 
them. 

In order to arrive at expression 4.7 we explicitly ignored the possibility of having multiple 
photons from either source, which is a simplified picture. By considering different cases that can 
lead to coincident detections at detectors D1 and D2 we can take these into account and estimate 
the second-order correlation function for co-polarised laser and ELED82 as it will be measured in 
the experiment: 
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where   is proportional to the XX photon intensity and    is proportional to the laser intensity 
measured at detectors D1 and D2. The first term represents the wanted case with one photon 

from the quantum dot and one from the laser. The unbalanced coupling ratios      ,       

have been “bundled” into the intensity factors   and    (which are experimentally easily 
accessible from count rates on D1 and D2) and are therefore no longer explicitly written. The 

second term represents accidental coincidences from the quantum dot, where     
       is the XX 

transition second-order auto-correlation function, separately measured and analytically fitted as in 
chapter 2. The final term represents accidental coincidences from the laser. By convolving the 
above expression with the instrument response for detectors D1-D2 (measured to be 80 ps) we 
arrive at the simulated interference visibility presented together with the experimental results in 
the next section. 
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4.2.3 Experimental results 
 

The measured second-order correlation functions  ||
       for co-polarised interfering 

photons are shown in figure 4.2 below for increasing detuning    going from the bottom to the 
top of the figure. Points indicate experimental data and solid lines are simulated correlations 
according to equation 4.8 from the previous section. For zero detuning we show second-order 

correlations for both the interfering photons ( ||
      , bottom correlation, black) and for non-

interfering, orthogonally polarised photons (  
      , bottom correlation, red). For non-

interfering photons, which represent what is expected classically, we see a clear dip originating 
from the partially sub-Poissonian photon stream, while the co-polarised, interfering case 
contrasts with a clear peak. We note that this peak originates from our direct observation of the 
“bunching” behaviour due to bosonic coalescence in output port 3. Previous two-photon 
interference experiments usually observe two-photon interference as an absence of coincidences in 
opposite output ports32,82,87. 

As we increase the detuning    quantum beats with increasing frequency appear in the 
correlations. The grey dashed line in figure 4.2 shows the calculated beat period for each detuning 
energy. Quantum beats of similar kind have previously been observed for photons originating 
from atomic transitions with very long radiative lifetimes (hundreds of nanoseconds)147,148, but 
our observations here are to the best of our knowledge the first for quantum dot emitters.  

It is interesting to note that the two-photon interference can be viewed as single-photon 
interference conditional on the detection of the first photon74,147: when the first photon is 

detected by either D1 or D2 the system is projected into the state  |    ⟩  |    ⟩  √ , an 
entangled photon-number state for the input modes, since no which-way information exists 
revealing which input port the first (detected) photon originated from (the ± depends on which 
detector fired first). However, if the two photons are detuned the two components will evolve 
with different frequencies until the detection of the second photon, giving the detection time 

dependent state |      ⟩   |    ⟩             |    ⟩  √ . The detection probability in 
output mode 3 can be calculated from this and acquires the characteristic beat  

  ⁄              . 
An effect of the quantum beats that will be of practical importance in our quantum 

teleportation experiments is the narrowing of the central peak of  ||
       with increasing   . 

With the finite detector time resolution this means that the peak becomes harder and harder to 
resolve. This effect is visible in figure 4.2 as the detuning increases. To quantify the interference 

we calculate the interference visibility as       ( ||
         

      )    
      , and the 

resulting experimentally measured visibilities are shown in figure 4.3(a). We see that the visibility 
approaches zero for detection time differences larger than the XX photon coherence time 

       ps. The effect of detuning is also visible, both as oscillations of increasing frequency and 

as a reduced visibility at coincident detection (   ). The peak visibility      as a function of 

detuning    is summarised in figure 4.3(b) together with simulation results. The magnitude of 
the observed bunching begins to drop as the beat period approaches the detector time resolution 
(80 ps for the pair D1-D2) but the interference is surprisingly robust, with appreciable visibility 

still after       μeV, and beats still visible in the correlations at       μeV, several times 

larger than the XX linewidth of     ⁄        . The somewhat surprising robustness of the 
post-selective two-photon interference shown here will be of practical help when performing the 
quantum teleportation experiments. 
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Figure 4.2: Measured (points) and simulated (full lines) second-order correlation 

functions for increasing energy detuning between co-polarised laser and ELED. For zero 
detuning (bottom correlations) the cross-polarised case is also shown (red curve). Clear evidence 

of bunching is manifested by the peak at     for co-polarised inputs (black curve, 0 μeV). For 
increasing detuning quantum beats appear, with period closely matching the expected value 
(grey, dashed curve). 
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Figure 4.3: (a) Two-photon interference visibility as a function of laser-XX energy 

detuning. (b) Peak visibility        as a function of detuning. Red dashed curve shows 
prediction from simulations. 

 
 

  



68 
 

4.3 Quantum teleportation of a laser photon 
 

 

4.3.1 Experimental setup 
 
Having verified that quantum interference on the unbalanced beamsplitter works as 

expected, we can turn our attention to the goal: to perform quantum teleportation with dissimilar 
light sources. For this purpose we extend our fibre-based setup to what is schematically showed 
in figure 4.4. A fibre-based polarising beamsplitter (PBS) is placed in the output port of the 95:5 
splitter, forming a Bell-state measurement apparatus together with SSPDs D1 and D2 measuring 
in the H/V basis coinciding with the X eigenstates. In usual teleportation jargon we call this part 
of the setup ‘Alice’. Note that compared to chapter 3 Alice is detecting both photons in the same 
output port of the beamsplitter. ‘Bob’ receives the X target photons propagating in mode 5 and is 
equipped with a PBS and avalanche photodiodes (D3, D4) to interrogate the polarisation state of 
the received X photons. All polarisation measurement bases are selected using electrical 
polarisation controllers (not shown) calibrated using an external laser beam. 

Detection times are measured relative to detections by Alice’s detector D1 (detecting H), 

with    signifying the detection time of D2 and    the detection time of Bob’s detectors D3 or 
D4. In this way, we can build up time-resolved third-order correlation functions of two-fold 
detections by Alice and polarisation-dependent detection by Bob. The experimentally determined 
pair-wise detector resolutions were; D1-D2: 80 ps, D1-D3: 340 ps, D1-D4: 360 ps. 

 
 

 
Figure 4.4: Schematic of setup implemented in single-mode fibre for quantum 

teleportation of polarisation states carried by laser photons. On Alice’s side the teleporter 
comprises an unbalanced beamsplitter (95:5), polarising beamsplitter (PBS) set to measure in the 
H/V basis and superconducting single-photon counting detectors (D1, D2). Bob receives the X 
photons from the ELED and is equipped with a PBS and avalanche photo-diodes (D3, D4) to 
interrogate the teleported state. 
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4.3.2 Modelling quantum teleportation 
 

4.3.2.1 Conditional probability 
 
Detecting two photons on Alice’s detectors D1 and D2, where D1 and D2 resolve 

orthogonal polarisations H and V in the same arm of the beamsplitter, effectively projects the 

detected photons onto the Bell state |   
 ⟩, orthogonal to |   

 ⟩ resolved in most quantum 
teleportation setups and chapter 3. With some algebra similar to equation 3.1 (page 40) we find 

that for an arbitrary laser input polarisation  |  ⟩   |  ⟩ we should find the teleported state 

received by Bob to be  |  ⟩   |  ⟩. This means the following set of unitary transformations 

imposed by the teleportation operation: HV, VH, DD, AA, RL, LR. Note the 
difference to teleportation in chapter 3; there it was the circular states that teleported onto the 
same state, here it is the diagonal states. The basic algebra considered here does not permit us to 
further understand and predict the performance of the teleportation of laser photons.  For this 
purpose a more detailed model, based on spatio-temporal wavepacket models such as above in 
section 4.2.2, was developed and is presented in this section. 

In the following, mode numbering according to figure 4.4 will be used. Let us define the 
laser photons to be in an arbitrary polarisation state |  ⟩    |  ⟩    |  ⟩ while the entangled 

XX-X pair is assumed to be in state |   ⟩  (|    ⟩        |    ⟩) √ ⁄ , where   is the detection 

time difference between XX-X and   is the X fine-structure splitting. The joint polarisation input 

state of the system is thus |   ⟩   |  ⟩|   ⟩. Furthermore, let us define the electric field 

operators at Alice’s detectors D1 and D2 to be  ̂ 
     and  ̂ 

     respectively. Bob measures an 

arbitrary polarisation state |  ⟩    |  ⟩    |  ⟩, and we associate the operator  ̂ 
     with the 

photo-detection of P-polarised photons by one of his detectors. 
Our primary interest here is to first calculate the probability that Alice detects a H photon 

at time   and a V photon at     , while Bob detects polarisation P at     , conditional upon 
the presence of three photons in the input modes: 

 
                |⟨ | ̂ 

     ̂ 
        ̂ 

       |   ⟩|
 

 |              |
  

(4.9) 

 

Here the probability is written with uppercase   while the probability amplitude is written with 

lowercase  . Using the beamsplitter mode transformations defined for the two-photon 
interference model in eq. 4.1 (page 62), we can relate the electric field operators at the point of 
detection to the operators at the input ports 1-2: 
 

  ̂ 
          ̂  

          ̂  
     

 ̂ 
          ̂  

          ̂  
     

 

 

(4.10) 

 
Note that a polarisation dependence is kept on the operators in addition to the mode index. The 

electric field operator  ̂ 
      ̂  

     at Bob’s point of detection requires no transformation. 
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The probability amplitude in equation 4.9 can now be expanded: 
 
                ⟨ | ̂ 

     ̂ 
        ̂ 

       |   ⟩   

⟨ |(     ̂  
          ̂  

    ) (     ̂  
       

      ̂  
       )  ̂  

       |   ⟩   

⟨ |(      ̂  
     ̂  

        ̂  
       

          ̂  
     ̂  

        ̂  
       

          ̂  
        ̂  

     ̂  
       

       ̂  
     ̂  

        ̂  
       )|   ⟩ 

(4.11) 

 
The first and the last terms can be omitted since we are interested in a probability conditional 
upon one photon present in each input mode 1-2. The probability for multiples from either mode 
will be dealt with when considering intensity terms later, similar to the two-photon interference 
model. Having dropped these cases we have 
 

               

         ⟨ |( ̂  
     ̂  

        ̂  
       

  ̂  
        ̂  

     ̂  
       )|   ⟩ 

(4.12) 

 
Following the usual approach (sections 2.1.2, 4.2.2) we can relate the electric field operator mode 
k to the annihilation operators: 
 

  ̂  
              

 ̂  
              

(4.13) 

 
Note that the annihilation (and creation) operator has been given polarisation dependence, i.e. 
they remove (or create) one photon of specific polarisation in mode k. As in section 4.2.2, the 
laser in mode 2 is CW but initially considered as a Gaussian wavepacket: 

 
 
        

 
      

 

         
(4.14) 

  

            is a normalisation so that the integral of absolute wavepacket squared is unity 
and t0 is the arrival time of the laser photon. For modes 1 and 5 carrying the XX-X pair we need 
to be more careful since they are populated by the entangled photon pair. We model this by 
defining a joint mode function,  
 

 
          {                      ( 

   )                         
        

 
 (4.15) 

 

where   is the detection time of the XX photon and    the X photon,    and    are central 

frequency of the X and XX photon respectively.     is the decay rate of the XX photon and    
the X photon. As before, decoherence of the XX photon is modelled as a random phase 

fluctuation process     . Decoherence of the X photon plays no role in the teleportation 

experiment and is therefore ignored here.    √      is a normalisation factor such that 

∫ ∫ |       
  |        

 

  

 

  
. 
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Putting the pieces together in equation 4.12 we get  
 

                 

        ⟨ |(                    ̂      ̂         ̂        

                     ̂    

     ̂      ̂        )|   ⟩ 

(4.16) 

 

Letting the annihilation operators “work to the left” (for example: ⟨ | ̂   ⟨  |) and 

considering the polarisation input state |   ⟩   |  ⟩|   ⟩ 
 

                 
         [                    ⟨  |  ⟩⟨           |   ⟩

                     ⟨  |  ⟩⟨        |   ⟩]

         √ ⁄ [                      
  

          
  

                       ] 

(4.17) 

 
In the experiment we run the source in d.c. mode, i.e. the excitation time relative to the 

laser photon is random. In addition we do not register the absolute detection time of the H 

photon,  . Therefore we average over many different “H detection times”  , and many different 

laser photon arrival times   : 
 
 
            ∫ ∫                                      

 

  

 

  

 
 (4.18) 

 
Inserting the assumed mode functions (equations 4.14 and 4.15) into the above integral gives 
long but straight-forward integral expression that can be analytically evaluated. In the end, the 

probability that Alice detects a H photon at some time   and a V photon at time      while 

Bob detects a photon with polarisation state |  ⟩   |  ⟩   |  ⟩ at time      is: 
 
 
                        [| | | |                       

 | | | |                 
 
|  |
  

                

 (        
         

 
                

         
 

      )

               ] 

 (4.19) 

 

where     , the Heaviside step function, is used to describe discontinuities: 
 

     {
     
      

 

 
Equation 4.19 is quite complicated, depending on the input state |  ⟩    |  ⟩    |  ⟩, Bob’s 

detected polarisation |  ⟩   |  ⟩   |  ⟩, the decay rate    and fine-structure   of the X state, 

the coherence time of the XX photons    and the source detuning       . In particular the 
fine-structure and the source’s detuning are interesting, showing up as oscillating factors on the 
last term. For superposition states on the equator of the Poincaré sphere, for example D 

(      √ ) the first two terms will be of equal magnitude whether Bob detects D or A 
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(    √       √ ). The difference will be made by the last term which embodies the 
interference in Alice’s Bell state measurement. Since it decays exponentially with the XX 

coherence time, teleportation will only succeed for |  |  . Figure 4.5 illustrates the effect of 

above discussed parameters on             for input state D. With no detuning and zero FSS, 

the probability for Bob to detect D is high near     , but low for output A (panels a-b). For 

large    comparable to    the probabilities to detect D and A are identical. If we assume a large 
FSS (panel c) or detuning (panel d) of 40 μeV oscillations appear, making detection of the 
expected state D less likely at certain times. The effect when using realistic photon detectors will 
be to wash out the signature of teleportation.  

 
Figure 4.5: Detection probability             for input state D and (a) no exciton FSS 

(   ) and perfectly tuned light sources (    ) when Bob detects the expected output state D 
and (b) Bob detects A. Note that the colour scale is different to better visualise the vanishing 

probability to detect A at      where interference occurs. (c) Bob detects the expected output 

state D but large FSS (     μeV) causes oscillations in detection probability. (d) Bob detects D 

but large source detuning (      μeV) cause oscillations in detection probability. 

 

The probability             derived in this section is conditional upon the presence of 
three photons in the input modes 1-3, and would be appropriate for a deterministic entangled 
source which always produces an entangled pair in ports 2-5. This is however not yet the case for 
the ELED used in the experiments presented in this chapter, and how we account for this is 
described in the next section.  
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4.3.2.2 Empirical parameters characterising the entangled photon 

source 
 

Accounting for uncorrelated biexciton-exciton emission 
 

            derived in the section above is a probability per unit time that Alice 

registers a H photon at some time   followed by a V photon at     , and that Bob detects a P-

polarised photon at time     .             tails off with rate    towards zero, reflecting the 

lifetime of the X state correlated with the XX photon.             is however a simplified 
model, which would be directly applicable for a deterministic photon pair source that always 
prepares the system in the XX state after which it can relax unperturbed. Here, the source is 
operated in d.c. mode, which means that we do not always get an X photon after the emission of 
an XX photon. Sometimes a re-excitation of XX will occur, or an electron (hole) will tunnel in, 
changing the X complex into an X- (X+) complex, thus destroying the polarisation correlation 
between XX and X photons. In typical d.c. polarisation correlation measurements we detect 

many photons with time difference between XX-X detection events much larger than      , i.e. 
they are not from the same cascade, and so we do in the measurements of third-order correlation 

functions     ’s presented in section 4.3.3. Since the exact quantum dot state level system is 
difficult to model accurately, we deal with these deviations from an ideal source in a semi-
empirical way by separating the intensity correlations from the polarisation correlations between 
XX and X photons60, and begin by asking ourselves the question “provided that Alice has made a 
coincident detection and Bob has a photon present in mode 3, what is the probability that he 
finds polarisation P”?  

Suppose that we have two uncorrelated photons from the ELED in input modes 1 and 5, 
and a control laser photon with polarisation C in mode 2. The photons in Alice’s system will with 

probability            go into the arm of the unbalanced beamsplitter where the Bell state 
measurement is carried out. The uncorrelated photons “masquerading” as an XX-X pair is 
assumed to be completely mixed and will thus with probability 1/4 have polarisations H-P, and 
with equal probability 1/4 it has polarisations V-P. Hence, the probability for us to detect 
polarisations H-V-P for these uncorrelated photons is 

 
 

          (|⟨ | ⟩|  
 

 
 |⟨ | ⟩|  

 

 
)             

 

 
 

 

 (4.20) 

 

We calculate a probability           weighted between the correlated photon events, represented 

with the first term             and uncorrelated photon events occurring with relative intensity 

   represented by a second term. We normalise to the total intensity which includes the 
complement of Bob’s detection (i.e. probability to detect polarisation Q, orthogonal to P) and 
arrive at a probability to find polarisation P in Bob’s output provided a three-photon detection 
occurs: 

 
 

          
                  

       
 
 

(                       )        
        

 
 

 

 

 (4.21) 

 
We can see that the above expression approaches 1/2 for large times, i.e. the photons will be 

uncorrelated either because the two-photon interference on Alice’s side failed (large   ) or the 

XX-X pair was not emitted in the same emission cycle (large   ). 



74 
 

 
Estimating empirical parameters 
 

There are two free parameters in the above description,    and   . The values of these 
can be estimated from the XX-X polarisation correlation measurements presented in section 
3.2.2. With an assumed XX-X joint wavepacket of the form given in eq. 4.15 the probability to 

detect polarisation P for the XX photon at some time t, and Q for the X photon at time     
can be calculated: 

 
 

       ∫   | |                   |⟨     | ⟩| 
 

 

 | |        |⟨     | ⟩| ∫           
 

 

     
      |⟨     | ⟩|  

 (4.22) 

 

where | ⟩   |  ⟩             |  ⟩  √  is the usual XX-X biphoton polarisation state. 
Using equation 4.22 and again making the same assumption of the source being a mixture of a 
“perfect” biphoton emitter and a completely mixed source, on can readily calculate the degree of 
correlation in different polarisation bases P/Q: 
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 (4.23) 

 
In the above expression the degree of correlation takes on the negative sign in the circular basis 
and positive in the linear bases. Experimentally, we have already measured and presented (section 
3.2.2) the polarisation correlations in three bases; rectilinear (H/V), diagonal superposition basis 
(D/A) and circular superposition basis (R/L). 

Figure 4.6(a) shows the experimentally determined degrees of correlation, calculated 
according to eq.  2.10 of section 2.2.1.2, along with fits to eq. 4.23 above. The fitting was done 

manually, and for         ns-1 and        ns-1 reasonable agreement is found. Also shown 

in figure 4.6(b) is the fidelity to the ideal Bell state |  ⟩ calculated from the degree of correlation 
(eq. 2.10), which agrees well with experiment. 
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Figure 4.6: (a) Degree of polarisation from polarisation correlation measurements of XX-

X photon pairs, plotted as a function X detection time   after XX. Correlations shown in 
rectilinear H/V (black), circular R/L (blue) and diagonal superposition (red) polarisation bases. 

Solid lines show fits. (b) Entanglement fidelity    to the ideal Bell state |  ⟩. Experimental 
results are shown with black points, lines show results from empirical fit with the black one 
including finite detector response and dashed one being the underlying theoretical curve, 
assuming infinitely fast detectors. 

 
Simulating third-order correlation functions 

 

Having formulated           in equation 4.21 above and determined the free parameters 
from independent experimental observations we are in a position where we can start to make 
predictions about the performance of the ELED-based teleporter based on the finite XX 
coherence time and the entanglement fidelity of the XX-X pair. However, experimentally we 
measure third-order correlation functions using the setup presented in figure 4.4, and these 
measurements will also include errors due to multiple photons generated by the light sources. 
Therefore, we calculate the third-order correlations by taking these factors into account in a 
similar way as for two-photon interference (equation 2.15 in section 2.1.2 and equation 4.8 in 
section 4.2.2). 
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We let     be proportional to the intensity of the laser in input port 2, then          
    is proportional to the laser intensity in mode 3, Alice’s detection arm. Similarly, the quantum 

dot intensity at the input of the beamsplitter is proportional to   , and the intensity in Alice’s 

detection arm is          . Now we can consider different ways to register three photons: 
 

(1) Desired case: one photon from laser and one from QD detected by Alice. This occurs 

with relative intensity after beamsplitter proportional to      and can be realised in two 

ways: 

a) Control photon went to H-detector, ancilla to V-detector (probability |⟨ | ⟩|  
 

 
). 

This means that Bob’s X photon has an intensity correlation with V-detector’s (D2) 

photon:     
           

 

b) Control photon went to V-detector, ancilla to H-detector and is detected (with 

probability |⟨ | ⟩|  
 

 
). This means Bob’s photon has an intensity correlation with H-

detector’s (D1) photon:     
   

     

 

Finally, conditional on one photon from the laser and two from the quantum dot being 

detected by Alice and Bob, the probability that the exciton is found to have polarisation 

P is          . Collecting the terms we get: 

   (
 

 
|⟨ | ⟩|     

           
 

 
|⟨ | ⟩|     

       )            

 

(2) Multiple XX photons from ELED:  

Two XX photons are emitted and detected as H and V by Alice with relative intensity 

proportional to     , and the X photon relative intensity to polarisation P is 1/2. But 

now all three photons originate form the quantum dot, so for a complete description we 

would need something like a third-order-correlation function for the quantum dot only, 

capturing the sub-Poissonian nature of the XX transition as well as the XX-X 

correlations. We have found that approximating this with     
             

        

     
           agrees reasonably well with experimental observations. For this second 

contribution to measured third-order-correlations we finally get: 

  

 
  

          
          

           

 

(3) Multiple photons from the laser: The relative intensity of having two photons 

originating from the laser in Alice’s measurement arm is      as given by Poissonian 

statistics. The final term includes the probability to detect one as H, and one as V, as 

well as a relative probability of find the (uncorrelated) X photon to have  

polarisation P (1/2): 

  

 
 |⟨ | ⟩|  |⟨ | ⟩|  
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In all of the above expressions we have dropped the unbalanced coupling ratios       and 

      since they are bundled into the intensities   and    after the beamsplitter. A low intensity 
approximation is adopted, taking only up to two photons from each source into account. The 
relative intensities of the light sources after the unbalanced beamsplitter are easily measured using 
detectors D1 and D2. 

Collecting all the terms (1)-(3) above we get  
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|⟨ | ⟩|    

          

 
 

 
|⟨ | ⟩|    

       )         

 
  

 
    

          
          

          

 
  

 
|⟨ | ⟩|  |⟨ | ⟩|  

 

 (4.24) 

 

which can trivially be normalised so that  
   
                . Convolving the above 

expression with the measured detector time responses we arrive at simulated functions 

 
   
           that, as we shall see in the next section, compare well with the experimental results. 

Using the developed model we simulate the performance of our teleporter for different 

laser to quantum dot intensity ratios (    ) and detunings    for a superposition control input 

state such as |  ⟩   |  ⟩  |  ⟩  √ . The results, shown in 4.7 below, suggest that a fidelity of 
up to 75% is achievable, and in order to suffer a no more than 1% reduction from this, the 
energy detuning needs to be less than         which is experimentally feasible. We chose to 
perform the experiments at a quantum dot to laser intensity ratio (measured at D1 and D2) of 

   ⁄     where the predicted fidelity is close to maximum. 
 
 

 
Figure 4.7: Simulated teleportation fidelity for a superposition state such as D, as a 

function of XX to laser intensity ratio (    ) and laser-ELED energy detuning.  
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4.3.3 Experimental results 
 

We test the quantum teleportation protocol for six input laser polarisation states 
symmetrically distributed over the Poincare sphere in three polarisation bases; the rectilinear basis 
H/V coinciding with Alice’s measurement basis and the quantum dot exciton eigenbasis, the 

diagonal basis spanned by |   ⟩    √   | ⟩  | ⟩  and the circular basis |   ⟩  

  √   | ⟩   | ⟩   The set was chosen to represent teleportation of a general qubit state. For 
each input state (as presented in sections 4.3.3.1-4.3.3.3) we measure the fidelity onto the 
expected output state by aligning Bob to the corresponding basis, i.e. he detects the expected 
state and the orthogonal counterpart. 

 

4.3.3.1 Teleporting polar states 
 
Quantum teleportation of the polar states H and V, coinciding with the X eigenstates and 

Alice’s measurement basis, is not really ‘quantum’ as discussed in section 3.2.3, since they do not 
require interference and entanglement to work. That is true also here, despite the laser input. 
Figure 4.8(a) and (b) show measured third-order correlation functions for teleportation of input 

state H, when Bob detects V and H respectively. The vertical dark stripe at      can be 
attributed to the sub-Poissonian nature of the XX transition, but there is only one dark vertical 
streak since the input photon is supplied by an independent source (in contrast to section 3.2.3 
where 2-3 vertical stripes are seen). Similarly, only one horizontal feature is visible, originating 
from correlations between H-polarised XX photons (detected by D1) and X target photons, 
giving a suppression of V detections by Bob (panel a) and enhanced detection of H (panel b). 
The diagonal streak can be explained in the same way, but there Bob’s detection is correlated 
with XX photons detected as V (by Alice’s detector D2). 

In figure 4.8(c) and (d) the simulated third-order correlation functions based on equation 
4.24 are shown, reproducing all the major features in the experimental data. The fact that 
teleportation of H does not require interference leads to the diagonal bright feature extending 
through the origin in panels (a) and (c). 

The bottom two panels (figure 4.8(e) and (f)) show cross-sections for coincidence by 

Alice (    ) through the simulated and experimentally measured third-order correlation 
functions. Again, qualitatively good agreement between model and reality is found, and they both 

show that when Bob detects a photon shortly after Alice registers a coincidence (    ), it is 
predominantly a V-polarised photon as expected from the configuration of Alice’s Bell-state 
analyser. 

We calculate the fidelity of Bob’s detected photons to the expected state V by taking 

                
                 

               
           . The result is shown in figure 4.9, 

with panel (a) showing the full time dependence as a function of Alice’s (  ) and Bob’s (  ) 

detection time delays. The diagonal bright streak in     
   

 in figure 4.8(a) results in a fidelity 

exceeding 1/2 along the diagonal. The cross-section at      when general teleportation can 

succeed is shown in panel (b), with a peak fidelity of                 . The red solid lines 
show fidelities calculated using the modelled third-order-correlation functions, exhibiting good 
agreement with measurements also here. 
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Figure 4.8: Measured third-order correlation functions for control state H for (a) Bob 

detecting target V,     
           and (b) Bob detects target H,      

          . (c) and (d) show 

corresponding simulated third-order correlation functions. (e) and (f) show cross-setions through 

the correlations, showing that Bob detects predominantly V when     . The black curve shows 
experimental results with Poissonian counting statistics indicated by error bars, red curve is 
simulated correlation function. 
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Figure 4.9: (a) Experimentally measured fidelity of control input H onto target V as a 

function of    and   . At the origin         where teleportation of a general state can 

succeed a peak fidelity of 0.835±0.026 is found. (b) Cross-section for      when Alice registers 

coincidence. (c) Cross-section for    along Alice’s time axis   . Red curves in (b) and (c) show 
modelled fidelity. 

4.3.3.2 Teleporting superposition states 
 
Superposition states are far more interesting and reveal more about the character of the 

teleporter, since they rely on two distinct quantum physical aspects to work: entanglement and 
quantum interference. Four superposition states evenly distributed on the equator of the 
Poincaré sphere were tested, D/A and R/L. In this section results for A and R laser polarisations 
are presented. 

Figures 4.10(a) and (b) show the measured third-order correlation functions for the input 
laser polarised along A when Bob measures A (panel a) and D (panel b) respectively. Here the 
diagonal and horizontal features are of approximately the same magnitude, and also similar 
between the two panels (a) and (b), since an A- or D-polarised X photon detected by Bob is as 
likely to be “paired up” with an H-polarised as a V-polarised XX photon. Crucially, panel (b) 
shows a clear absence of D-polarised target photons at the origin, i.e. where interference in 
Alice’s unbalanced beamsplitter can take place and the Bell-state measurement succeeds, 
projecting the target photon onto the expected output A. Indeed the diagonal and horizontal 
features in panel (a) go through the origin. The clear difference between panels (a) and (b) at the 
origin indicates successful teleportation of polarisation state A to A. Figure 4.10(c) and (d) show 
simulated third-order correlation functions that reproduce all these main features observed 

experimentally. In panels (e) and (f) cross-sections for      are shown, also showing that Bob 
receives predominantly A-polarised X photons when they are detected shortly after Alice’s 
coincidence, i.e. when the XX-X pair is from the same radiative decay cycle. 
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Figure 4.10: Measured third-order correlation functions for control state A for (a) Bob 

detecting target A,     
           (b) Bob detects target D,      

          . (c) and (d) 

corresponding simulated third-order correlation functions. (e) and (f) cross-sections through the 

correlations, illustrating that Bob detects predominantly A when     . Black curve is 
experimental results with Poissonian counting statistics indicated by error bars, red curve is 
simulated correlation function. 
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Figure 4.11(a) shows the fidelity of input A onto A as a function of detection time delays. 
For this superposition state, in contrast to the polar state H (figure 4.9), only a small high-fidelity 

spot exists, limited in   -direction by the coherence time of the XX photons and in   -direction 
by the effective lifetime of the correlated X photons emitted after the XX photons. We find a 

fidelity                  when        . Measurements and model agree qualitatively 

well as evidenced in the cross-sections through             in panels (b) and (c). 
 
 

 
Figure 4.11: (a) Experimentally measured fidelity of control input A onto target A as a 

function of    and   . The high-fidelity spot at         indicates teleportation for three-fold 

coincidence with fidelity value 0.698±0.033 to A. (b) Cross-section for      when Alice registers 

coincidence. (c) Cross-section for      along Alice’s time axis   . Red curves in (b) and (c) 
show modelled fidelity. 
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Teleporting a superposition state in the circular basis is very similar to the diagonal basis. 
Figure 4.12 presents the measured (panels a, b) and simulated (panels c, d) third-order correlation 
functions when the laser photons are carrying polarisation state R. The difference to the diagonal 
basis is that in the circular basis we expect the states to teleport to the orthogonal state. This is 
also what we see when comparing figure panels 4.12(a) and (c) with (b) and (d); Bob receives 
mainly L polarised X photons near the origin. 

In figure 4.13(a) the detection time-dependent fidelity             is shown, together with 
cross-sections through the origin in panels (b) and (c) showing good agreement between model 

and experimental data. At the origin we find a teleportation fidelity of                 . 
 

 
Figure 4.12: Measured third-order correlation functions for control state R for (a) Bob 

detecting target L,     
           (b) Bob detects target R,      

          . (c) and (d) show 

corresponding simulated third-order correlation functions. (e) and (f) show cross-sections 

through the correlations, showing that Bob detects predominantly L when     . Black curve is 
experimental results with Poissonian counting statistics indicated by error bars, red curve is 
simulated correlation function. 
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Figure 4.13: (a) Experimentally measured fidelity of control input R onto target L as a 

function of    and   . The high-fidelity spot at         indicates teleportation for three-fold 

coincidence with fidelity 0.744±0.028 to L. (b) Cross-section for      when Alice registers 

coincidence. (c) Cross-section for      along Alice’s time axis   . Red curves in (b) and (c) 
show modelled fidelity. 

 

4.3.3.3 Teleportation of a general input state 
 
Fig 4.14 shows the simulated and experimentally measured fidelities for the six individual 

laser polarisation states measured. The polar states on the Poincaré sphere coinciding with Alice’s 

measurement basis show the highest fidelity as expected (                ,      
           ), as these do not require successful interference in the Bell-state measurement 
apparatus, and could be done with just classically correlated photon pairs. The four superposition 
states, which rely on both successful interference and entanglement, all have relatively similar 

output fidelities (                ,                 ,                 , 

                ). The slightly higher fidelity in the circular basis compared to the 
diagonal is consistent with polarisation correlations observed for this type of QD, which can be 
attributed to nuclear polarisation fluctuations in the quantum dot59,100. The simulation does not 
include these effects and predict the same peak fidelities for all superposition states (0.75) and 
also the same for the two polar states H and V (0.92). 
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Figure 4.14: Distribution of individual output state fidelities. Experimentally measured 
fidelities in red, simulated in blue. 

As discussed in chapter 3, for our choice of input states, the highest possible average 
output fidelity is 2/3 using the best possible classical teleporter132. Figure 4.15 below presents the 
average fidelity for our set of input states, shown as a function of the detection times. For 

coincident detection by Alice and Bob (       ) we achieve an average fidelity of 0.767 ± 
0.012, clearly beating the classical limit and proving that quantum teleportation from laser 
photons to an X photon is taking place. Also shown in figure 4.15, projected onto the sidewalls, 

are cuts through the origin of the fidelity map at      and      together with results from 

the model showing good overall agreement. At      (along Bob’s time axis   ) the peak width 

is limited by the XX-X polarisation correlations, and for      (along Alice’s time axis   ) the 

peak is limited by the XX coherence time   . The higher fidelity compared to the average for 
teleporting states encoded on another XX photon (0.704, section 3.2.5) can be explained 

primarily by the interference being less sensitive to the finite coherence time    of the XX 
photons since the laser photon has (practically) infinite coherence length; we can see this in 

equation 4.19 where the interfering term drops as       |  |     whereas if we interfered two 
XX photons it would drop twice as fast (see for example eq. 2.7 in section 2.1.2). 

The main source of uncertainties in all experiments is due to the photon counting 
statistics. Quoted errors on teleportation fidelities include in addition to this an uncertainty in 
time calibration of the photon correlation equipment (less than 1% on individual fidelities).  

During the teleportation experiment we also collect detection events to probe the 
statistics of the X photons going down the optical fibres to Bob, essentially performing a 
Hanbury-Brown-Twiss measurement using his detectors (D3-D4) simultaneously as the laser 
photons are being teleported. The resulting second-order correlation function is shown in figure 

4.16 and we find a characteristic dip with minimum     
                  , which confirms 

that the setup erases the Poissonian statistical nature of the input laser field, also shown with 

      
        . This could be useful for transferring the state carried by the laser photons into a 

quantum circuit and thereby reduce errors in its operation. 
To conclude this section, we have proven that quantum teleportation from photons of a 

Poissonian light field onto photons generated by a sub-Poissonian quantum emitter is taking 
place. 
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Figure 4.15: Average teleportation fidelity for six input states, as a function of Alice’s 

detection time    and Bob’s detection time   . Points and red lines on projected on side-walls 
show cross-section through the experimental and simulated average fidelity map respectively. A 
peak fidelity of 0.767±0.012, beating the classical limit 2/3 and proving the quantum nature of the 
teleportation.  
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Figure 4.16: Second-order correlation function in the teleportation output received by Bob 
(black), based on detection events acquired during the teleportation measurements using APDs 
D3-D4, averaged over the six teleported states. The dip extends to 0.247±0.002 and shows that the 
Poissonian nature of the teleporter input laser field (red) has been erased in the output received 
by Bob. 
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4.3.3.4 Measuring the density matrix of a teleported photon 
 
In the experiments described above Bob interrogates the output photon by measuring in 

the expected output polarisation basis only, which cannot reveal the full character of the output 
light. For example, when teleporting R Bob was aligned to record R-and L-polarised photons 
only. To explore the teleported states deeper we performed single qubit tomography149 of the 
output photon density matrix corresponding to laser input state R by measuring the output 
fidelity in the three bases H/V, D/A and R/L. For a perfect quantum teleportation 
implementation one would expect input R to yield output L with unit fidelity and fidelity 0.5 in 

the H/V and D/A bases. At         we measure fidelities                  , 
                 and                 . These numbers can easily be related to the 
density matrix, here expressed in the rectilinear (H/V) basis: 
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(4.25) 

 
We see that the diagonal elements are related to the measurements in the H/V basis, while the 
real (imaginary) elements are directly related to the measurements in the D/A (R/L) basis. Figure 
4.17 shows the reconstructed density matrix presented in the circular basis. Clearly the output 

state is closest to the expected (L) and the fidelity      is the same as measured previously 
(section 4.3.3.2) within the accuracy of the experiments, but the measurements also revealed a 
relatively strong D component which results in the non-zero off-diagonal imaginary components 
in figure 4.17(b). 
 

 

 
Figure 4.17: (a) Real part of density matrix of target Xt photon, for input state R at time of 

maximum fidelity, shown in the circular polarisation basis. The strongest element occurs for L, 
the expected output state. (b) Corresponding imaginary part. Red bars are experimental values, 
blue simulated. 
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The largest eigenvalue    of the density matrix tells us the maximum fidelity that can be 

measured, and the corresponding eigenvector |  ⟩ tells us the polarisation along which Bob 

should be aligned in order to measure this fidelity. Figure 4.18(a) shows    as a function of Bob’s 

detection time   , with an experimental peak value of 0.763±0.030 which is larger than     . 
This confirms that indeed Bob’s measurement of L was not optimally aligned to the actual output 
state. The results based on simulated third-order-correlation functions, also presented in figure 
4.18(a), show good agreement. 

The density matrix is diagonalised in the eigenbasis, i.e.     |  ⟩⟨  |     
   |  ⟩⟨  |  but we can also model the density matrix as being composed of a fraction   of 

completely mixed light  |  ⟩⟨  |  |  ⟩⟨  |    and a pure fraction       of |  ⟩⟨  |: 
 
  

        |  ⟩⟨  |    (
 

 
|  ⟩⟨  |  

 

 
|  ⟩⟨  |) 

 

(4.26) 

 

It is then easy to relate the mixed fraction to the largest eigenvalue:          . We see from 

figure 4.18(a) that as    increases       , i.e. the mixed fraction     as the X photon 
detected by Bob is no longer from the same radiative cascade as the XX photon detected by 
Alice. As it carries no correlation to mediate the teleportation the target photon polarisation 
becomes completely randomised, i.e. the mixed fraction becomes unity.  

In addition to the time dependence of    we analyse the corresponding eigenstate |  ⟩. 
Figure 4.18(b) shows the overlap with the desired output L and the orthogonal state R. 

Experimentally, we can follow the evolution of |  ⟩ up to      ns after which the uncertainty 
becomes too large. In any case, a clear evolution can be seen of the output from L towards R 

with Bob’s detection time   , i.e. the delay between from Alice’s coincidence to the detection of 
X photon. The numerical model, in contrast to the experiment, is noise-free and a pure fraction 

(albeit still asymptotically vanishing for large   ) can always be accurately separated, and as shown 
in Figure 4.18(b) the predicted output state evolution is well-described by the fine-structure 

splitting (s~2 μeV) of the X state, and the evolution rate agrees well with the experimental data. 
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Figure 4.18: (a) Maximum eigenvalue of the density matrix as a function of Bob’s 

detection time   , taken at      (when Alice registers coincidence). Simulated result shown 
with red dashed curve. (b) Evolution of the pure output state component of the density matrix, 

shown as overlap of the eigenstates |  ⟩ with L (black squares) and R (red triangles) respectively. 
Simulated curves are plotted for L (black, dashed) and R (red, solid line). 
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4.4 Conclusions 
 
To conclude, we have performed photonic quantum teleportation of input states 

encoded on photons from a coherent light source, teleporting them onto a stream of photons 
from a sub-Poissonian semiconductor emitter. With further improvements of the device design, 
such as placing the emitter in an optical cavity34,68,79, the teleportation method presented here 
could find application in e.g. the realisation of quantum relays for dissimilar light sources. The 
protocol used here, with a strongly unbalanced beamsplitter, could also provide a useful interface 
to remotely initialise quantum information circuits using ubiquitous laser-generated photons over 
long distances, and more “exotic” sub-Poissonian light fields in the local quantum circuit. Other 
interesting applications could be to secure QKD networks from Trojan horse attacks150. The 
laser-quantum emitter interface it provides is also well suited for existing QKD systems which are 
usually based on weak coherent pulses151. 
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5 Voltage control of dynamic nuclear 

polarisation in single quantum dots 
 
 

5.1 Introduction 
 
Quantum dots find many potential applications in the field of quantum information 

processing, e.g. as quantum memories152, coherent qubit control22,36 and as discussed extensively 
in previous chapters, for generation of single photons and pairs of entangled photons. The 
hyperfine interactions between the localised charge carriers in the quantum dot and the 
mesoscopic nuclear spin system influence all above mentioned applications; it is a limiting source 
of dephasing in coherent manipulation schemes153 and nuclear spin fluctuations affect the exciton 
eigenstates with direct impact on entangled-photon-pair generation100. Understanding the nuclear 
interactions in quantum dots is thus motivated from an application point of view, but apart from 
that it is also a very active field of material science in its own right. Dynamic nuclear polarisation 
(DNP), in which spin-polarised electrons transfer spin to the nuclei and thereby create a nuclear 
polarisation that acts back on the electrons (the Overhauser effect154), was first explored in bulk 
semiconductors from ~1970s for electrons localised near donors155. DNP effects in quantum 
dots, studied from the 1990s and on156,157 differ from the bulk because of the charge confinement; 
the carriers interact with a comparatively small number of nuclei (104-105) making spin transfer 
more efficient43, and the nuclei are largely decoupled from the surrounding bulk material which 
means that the spin lattice is essentially a small, isolated system with inhibited nuclear spin 
diffusion158. DNP combined with nuclear magnetic resonance techniques have been used to in 
detail probe the isotope composition and strain in individual quantum dots159, and to quantify the 
hyperfine interaction of electrons and holes in different quantum dot material systems160, to 
mention two recent examples of quantum dot material science. 

This chapter starts with a description of physical processes involved in dynamic nuclear 
polarisation experiments in quantum dots (section 5.2) which gives a background to interpret 
experimental results presented in subsequent sections. DNP experiments in zero field (section 
5.3.3) and in longitudinally applied fields (Faraday geometry, section 5.3.4) strongly indicate that 

the main parameters governing the dynamics are the electron hyperfine correlation time   
  and 

the nuclear depolarisation time    , and that they are interconnected and can be controlled by an 
applied voltage. DNP in Faraday geometry is shown to exhibit strongly non-linear bistable 
behaviour, and internal effective fields corresponding to several Tesla are created through optical 
pumping. Depolarisation measurements of optically aligned electron spin in transverse magnetic 
fields (Voigt geometry, section 5.3.5) also exhibit strongly non-linear behaviour and a radical 
departure from the standard Hanle effect155. The results furthermore show that quasi-resonant 
excitation, previously used in observation of anomalous Hanle effect in single quantum dots161, is 
not a pre-requisite for such anomalous behaviour, and that the system can be voltage tuned from 
the anomalous to the normal Hanle regime. 
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5.2 Electron-nuclear spin system 
 

All occurring isotopes in InAs/GaAs QD systems have non-zero nuclear spin (Ga and 
As 3/2, In 9/2) which means that hyperfine interactions can be expected to take place, and the 
interaction in quantum dots is particularly strong in QDs compared to bulk systems due to the 
charge carrier confinement43. The electron-nuclear interaction is usually described with a “Fermi 

contact” Hamiltonian proportional to |     |
 , the probability of finding the electron at the 

nuclear site   
162:  

 
  

 ̂     ∑  |     |
   ̂   ̂  

 

 
  

 
∑  |     |

  [  ̂ 
  ̂  ( ̂ 

  ̂   ̂ 
  ̂ )]

 

 

 

 
(5.1) 

 

where the summation is over all nuclear lattice sites  ,    is the crystal lattice unit cell volume,    

is the hyperfine interaction constant for the different nuclear species (       μeV,        

μeV,        μeV) and  ̂ and   ̂ are the electron and nuclear spin operators. Here the identity 

 ̂   ̂   ̂ 
  ̂  ( ̂ 

  ̂   ̂ 
  ̂ )   has been used, with the second term using the ladder operators 

 ̂ 
  and  ̂  representing the possibility for the system to perform “flip-flops”, i.e. electron spin 

flips with transfer of angular momentum to the spin of one nucleus. Hole wavefunctions, in 
contrast to conduction electrons, do not overlap significantly with the nuclei, and their main 
interaction is of dipole-dipole type which is at least one order of magnitude weaker163 and is 
therefore neglected in the rest of this chapter.  

The positively charged exciton state    is a particularly convenient object for studying 
the electron-nuclear spin interactions, as it contains two paired holes in a spin singlet state 

 |  ⟩  |  ⟩  √  and an un-paired electron44. Using optical excitation the spin orientation of 
the electron can thus be controlled simply by means of polarised optical pumping, which will also 
be the method used in the following sections. 

Figure 5.1 illustrates a scheme of different processes involved in dynamic nuclear 
polarisation experiments. The effect of a spin polarisation of the nuclear spin ensemble on an 

electron is usually described in terms of an effective magnetic field, the Overhauser field     , 

inducing a shift in electron spin energy called the Overhauser shift               . This shift 

can be observed on the optically recombining    complex by means of spectroscopy (see section 
5.3.2). The electron spin also influences the nuclei and this is often also described in terms of an 
effective magnetic field, the Knight field. The Knight field is limited to a few tens of mT 
maximum162 while the Overhauser field, as we shall see in section 5.3.4, can reach several Tesla. 
Despite the differing orders of magnitudes the Knight field can play an important role both for 
stabilizing the nuclear spins in low magnetic fields, and conversely contribute to nuclear de-
polarisation in some situations43. 
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Figure 5.1: Hyperfine interactions between localised electrons and the quantum dot host 

nuclei in optical spin orientation experiments. Optical excitation creates a spin-polarised electron 
in the quantum dot that has hyperfine interactions with the nuclear ensemble. Net spin is 
transferred from the electron to the nuclei via “flip-flops” and can build up a nuclear spin 
polarisation, acting back on the electron via the Overhauser effect. Flip-flop processes occur on 

characteristic time scale    . Nuclear-to-nuclear dipole interactions (spin diffusion to 
surrounding bulk lattice nuclei) and Knight field fluctuations contribute to nuclear depolarisation 

(  ). 

 
The hyperfine interactions permit transfer of spin from the electron to the nuclei in spin-

conserving “flip-flop” processes characterised by the time scale     as indicated in figure 5.1.  

    can be estimated as43,164  
 
 

   
   (

 ̃

  
)

 

 
     

 

        
  ⁄     

 

 

 

(5.2) 

 
where    is the fraction of time the quantum dot is occupied by an electron,   

  is the electron 

hyperfine correlation time and      
 
 
 
          is the electron spin splitting due to an 

external field    and an Overhauser field     .  ̃     μeV is the average Fermi-contact 

hyperfine constant for realistic InAs quantum dots with Ga intermixing,    is the Bohr 

magneton and    the electron g-factor. The presence of     implies a slow-down of the nuclear 

depolarisation rate due to electrons (   
  ) in fields larger than the Knight field. Since the electron 

Zeeman spin splitting in a given magnetic field is ~1000 larger than the nuclear Zeeman 
splitting43 electron-nuclear flip-flop processes would at first seem problematic from an energy 

conservation point of view. The electron correlation time   
 , characterising the interaction time 

between the electron and nuclei, here provides an essential line broadening that makes flip-flops 

possible without violating energy conservation.   
  is usually considerably shorter than the    

radiative lifetime and is most likely limited by the relaxation of the electron during the initial 

charge capture and formation of the    state165. 
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Figure 5.1 also contains an additional pathway for nuclear spin depolarisation, as 
indicated symbolically by an arrow away from the electron-nuclear system under consideration 

and characterised by the time   . This path represents nuclear spin depolarisation, for example 
by spin diffusion from the quantum dot into nuclei in the surrounding host lattice, mediated by 
nuclear dipole-dipole interactions. Modelling nuclear spin depolarisation is a very complex task 
due to the presence of strong nuclear quadrupole effects in strained InAs QDs159. One plausible 
approach is to include the gradual inhibition of nuclear spin relaxation due to quadrupolar 
coupling as the longitudinal field increases166:  
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   is usually in the range of hundreds of mT, which stresses the importance of quadrupolar 

effects at low fields. At high fields       the external field dominates the effective 

quadrupolar fields and the order and separation of the nuclear Zeeman levels is restored.  
The dynamics of the electron-nuclear spin transfer can be modelled using a rate 

equation167: 
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where an average field picture is used with 〈 ̃ 〉  ∑〈 ̂ 
 〉    the average nuclear spin in the 

quantum dot (averaged over all nuclear species and all   lattice sites i).  

 ̃  ∑            (      )      for InAs QDs. Assuming steady state it is straight-

forward to derive 
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Furthermore, assuming a spatial electron wavefunction of identical magnitude over all nuclear 

sites, one can relate the average nuclear spin 〈 ̃ 〉 to the effective magnetic field      of the nuclei 

acting on the electron:        ̃∑〈 ̂ 
 
〉      . Using this, equation 5.5 can be re-written as an 

implicit equation in     : 
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(5.6) 

 

The average electron spin 〈 ̂ 〉 refers to the average electron spin at the start of the interaction, 
right after the dot becomes populated. As a rough approximation we take a constant value of 

〈  〉              (consistent with high degrees of electron polarisation observed in section 

5.3.3). The equilibrium electron spin polarisation 〈  〉                        at 4K is 
negligible over the magnetic field range explored in section 5.3.4. 

Equation 5.6 will have different solutions depending on the values of the system 

parameters and the applied magnetic field   . Figure 5.2(a) shows an example of the left hand 
side (LHS) and right hand side (RHS) for three different external field magnitudes (1T, 3T and 
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5T). The LHS is trivially just a line with slope unity. The RHS has a Lorentzian shape, centred 

around the electron Zeeman splitting        and has a width given by     
 . In general there 

will be three solutions to the equation, two which are stable. At 1T the solutions are degenerate, 

39 μeV in the example. At 3T three solutions (4, 56, 80 μeV) are found, where the largest and 
smallest are the stable solutions that the system will exhibit experimentally. These correspond to 
different branches in a hysteretic DNP behaviour. At 5T the system has again only one solution, 

1 μeV, which corresponds to a point after a sudden collapse of the OHS (for more about this see 
section 5.3.4). 
 

 
 

Figure 5.2: (a) Graphical representation of the left hand side (LHS) and right hand side 

(RHS) of equation 5.6 at three different external fields. At     T and 5T only one solution 
exists, but for 3T three solutions exist, of which only two are stable. (b) Example solution to the 
implicit equation 5.6, showing the two stable solutions corresponding to sweeping external field 
up (blue) or down (red). Black circles mark the points corresponding to the curves in panel (a). 

 
Bistabilities of the DNP of quantum dots under different experimental conditions 

varying for example excitation polarization168,169, excitation power165,170 and magnetic field171 have 
been extensively studied and successfully modelled before using the implicit equation 5.6 above. 
In section 5.3.4 the above described model will be used to aid the first systematic study of the 
bistable nuclear spin system as a function of an applied electric field. The application of a bias 
voltage can have profound effects on the main characteristics of the coupled electron spin-
nuclear spin system, such as electron correlation time, nuclear spin relaxation time, the Hanle 
effect and the electric field gradients in the structure i.e. nuclear quadrupole effects. 
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5.3 Experimental 
 

5.3.1 Magneto-spectroscopy setup 
 

Single quantum dot spectroscopy of    for optical detection of dynamic nuclear 
polarisation presented in the following sections was carried out using a micro-photoluminescence 
setup (micro-PL) schematically depicted in figure 5.3 below. The configuration is of confocal 
type with excitation and detection coupled from and to single mode fibres in different arms. 
Glan-Taylor linear polarisers and voltage-controlled liquid crystal retarders allow for excitation 
and detection of circular, linear or arbitrary elliptical polarisation. The sample is mounted on an 
XYZ piezo stage in a liquid helium exchange cryostat. The stage allows for nanometre precision 
movements in three dimensions. This, in combination with the very high spatial resolution of the 

system (~1 μm) owing to the small effective apertures of the excitation and detection single 
mode fibres (SMF), allows single quantum dots to be optically addressed. High-resolution 
spectroscopy is performed using a monochromator coupled to a low noise silicon CCD. 

A superconducting magnet allows for fields up to 9T to be applied in z-direction, 
coinciding with the sample growth direction in Faraday geometry (section 5.3.4). For Voigt 
geometry experiments (section 5.3.5) the sample is mounted vertically using a custom made 
holder, allowing the applied field to be applied transversely, or in-plane, relative to the sample 
growth direction. An additional mirror makes optical access to the single quantum dots possible 
also in this geometry. 

 

 
 

Figure 5.3: Micro-PL setup for single quantum dot magneto-spectroscopy in Faraday 
geometry. A combination of Glan-Taylor linear polarisers and voltage controlled liquid crystal 
retarders (LCR) allows for excitation and detection of arbitrary polarisations. 
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5.3.2 Optical detection of nuclear polarisation 
 

Figure 5.4 shows the optical transitions of the positively charged trion    and associated 

spin configurations in the presence of an external longitudinal field    and an effective nuclear 

magnetic (Overhauser) field     . In the    state two heavy holes are present and in the lowest 

orbital states they occupy anti-parallel spin states (+3/2  and -3/2 ). After recombination a 
single hole is left in the dot, with Zeeman energy only determined by the external field as the 
hyperfine interaction of holes is one order of magnitude weaker160 than for the electron and 
therefore neglected, as explained before. Conservation of angular momentum determines which 

transitions are optically active: the un-paired electron +1/2 () can recombine with a -3/2 hole 

(), i.e. the electron makes a transition to a valence state with angular momentum 3/2. The 

increased angular momentum   of the electron is balanced by the emission of a    polarised 

photon carrying angular momentum   . Similar rules apply to the trion with a spin-down () 
electron.  
 

 
 

Figure 5.4: Zeeman splitting of X+ transition lines. Optically active transitions with 
circular polarisation are shown. 

 
From the diagram in figure 5.4 we see that the energies of the transitions are given by the initial 
state of the electron and the final state of the hole: 
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(5.7) 

 
which gives a total energy splitting of the lines 
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(5.8) 

 

where                   is the Zeeman splitting in absence of an effective nuclear 

magnetic field, and                is the Overhauser shift. 
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Figure 5.5 shows an example PL-spectrum measured at      T showing a clear and 

large Zeeman splitting    of the    transition of a quantum dot. Linearly polarised excitation 
was used to ensure no initial spin polarisation of the charge carriers to avoid nuclear polarisation 

effects. By carefully measuring the   -    splitting    with circularly polarised excitation and 

knowing    the OHS (     ) resulting from electron-nuclear spin transfer can be separated 
from equation 5.8 above. Due to the inherently narrow-band emission of single quantum dots, 

OHS down to a few μeV, well below the linewidth of the spectroscopy system, can be detected 
by fitting the measured transition line with Gaussian lineshapes. Figure 5.6 illustrates an example 

of such lineshape analysis, detecting an OHS ~8 μeV induced by optical spin-pumping of the 
nuclei in the absence of external magnetic field.  

In the following sections, we perform micro-photoluminescence (PL) experiments in 
zero external magnetic field, with an external magnetic field parallel (Faraday geometry) and 
transverse (Voigt geometry) to the sample growth direction. Through careful analysis of recorded 
spectra as outlined here the electron interaction with the mesoscopic nuclear spin ensemble in 
single quantum dots is studied. 

 
Figure 5.5: Zeeman splitting of X+ transition in an external field     T. Linearly 

polarised excitation was used. 
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Figure 5.6: Detection of small energy shifts by line fitting.    circularly polarised 

excitation induces ~8 μeV Overhauser shift detected by recording       - polarised spectra. 
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5.3.3 Optical pumping of nuclear spin polarisation in a charge 

tuneable device 
 
Our sample contains self-assembled InAs quantum dots (QD) embedded in a GaAs 

diode structure. The design, schematically depicted in figure 5.7, includes thick AlGaAs barriers 
to allow for wide range electric field tuning while avoiding the tunnelling out of photo-generated 
carriers. Such designs have previously been used to tune the energy of different exciton 
complexes172, to observe the coherent coupling between neutral exciton states50 and to control 
the electron- and hole g-factors173. Distributed Bragg reflectors placed outside the tunnelling 
barriers create a weak optical cavity, enhancing the light collection efficiency around the emission 
wavelengths of the quantum dots (~940 nm). The sample is operated with an applied d.c. bias at 
~4K in the photoluminescence spectroscopy setup depicted in figure 5.3 above.  

 
 

 
 

Figure 5.7: Schematic band diagram of the charge-tuneable QD diode structure. Thick 
AlGaAs barriers (green) inhibit the tunnelling of photo-generated charge carriers out of the 
quantum dot. White regions indicate nominally intrinsic (un-doped) GaAs. Charge carriers are 
excited in the low-energy tail of the wetting layer and subsequently relax into the quantum dot 
ground states. 

 
We take advantage of the wide tuning range of the devices to study the effect of varying 

electric field on dynamic nuclear polarisation (DNP) effects in single quantum dots. We use 
circularly polarised light from a tuneable CW Ti-Sa laser to create a spin-polarised electron 
population in the wetting layer. The holes on the other hand quickly lose their polarisation in the 

wetting layer43, which means that the formation of the hole singlet state of the    is uninhibited, 
while the unpaired electron spin is largely determined by the pump laser. To achieve the highest 
possible nuclear spin polarisation we operate the laser at ~850 and ~860 nm, which corresponds 
to the low energy tail of the quantum dot wetting layer and minimises excitation of light holes174. 
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The large electric field tuning range of the device used here is illustrated in figure 5.8(a), 

which shows photoluminescence from a quantum dot as a function of applied voltage. The    
transition can be seen over a range of more than 4V beginning at about approximately -4.5V. 
Around -1.3V the electron tunnelling rate out of the dot has been sufficiently suppressed to 

permit the existence of neutral exciton (  ) and biexciton (   ) complexes and at ~0V the 

negative trion (  ) appears. From this point and through the rest of this chapter we devote our 

attention to the   state only, since it has been shown that its presences allows for achieving high 
degrees of DNP 43. 

We start to probe the nuclear spin system in zero external magnetic field by exciting the 
charge carriers with circularly polarised light. As discussed in section 5.2 the mean electron spin is 
partially transferred to the nuclear spin system and results in the build-up of an effective nuclear 

magnetic field      that will in turn act on the electron. The Overhauser shift (OHS),       
         is here, in absence of external magnetic field (    ), directly detected as the 

difference between    and   -polarised PL spectra as described by equation 5.8. While 

comparing the    and    transition energies allows us to calculate the OHS and gain insight into 
the nuclear spin environment, comparing the PL intensities gives insight into the environment 
experienced by electrons localised in the quantum dot through the degree of circular polarisation 

                      , where     is taken as the area of the fitted lineshapes. The 
degree of circular polarisation is directly related to the electron spin polarisation averaged over 

the spin lifetime;      〈  〉       ∫ 〈     〉             
 

 
. The resulting OHS together 

with the degree of circular polarisation is shown in figure 5.8(b) for the    transition. Around  

-2V, roughly in the middle of the range where    exists, an OHS of ~8 μeV and a high degree 
of PL circular polarisation (~60%) is achieved. Here, the DNP helps to stabilise the electron spin 
against the fluctuating effective magnetic field from the nuclei in the QD174. Towards the ends of 
the range the OHS and the circular polarisation both drop, as the conditions for spin transfer to 
the nuclei become less favourable, and charge carriers begin to tunnel in and out of the dot and 
consequently lose their spin polarisation.  
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Figure 5.8: (a) Bias-dependent PL spectra in zero external magnetic field, showing 

identified exciton complexes. (b) Overhauser shift (OHS, blue circles) and degree of circular 

polarisation (  ) as a function of applied bias voltage. 
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5.3.4 Dynamic nuclear polarisation in longitudinal magnetic field 
 
 
The results presented in figure 5.8 on their own strongly indicate that we can control the 

electron-nuclear interaction by changing the bias voltage, but they do not allow us to deduce any 
of the parameters characterising the interaction. To study the voltage dependence further, we 

perform DNP measurements in applied longitudinal magnetic fields    at different applied 

voltages. For each voltage    is swept first from zero to a maximum of 6T, and back down to 

zero, all the time exciting spin-polarised electrons with a   -polarised laser and recording the PL-
spectra.  

As a first example let us consider measurements at a constant bias of -2.0V: Figure 5.9 

shows the detected energy splitting of the circularly polarised    lines for linear excitation (red) 

and   -excitation (black). For both linear and circular excitation the energy splitting first 

increases linearly with   , crucially however with different slopes. At a critical field       a 

discontinuous jump can be seen for the circularly excited case, after which the two curves 

overlap. The deviation for          can be explained by the existence of an Overhauser shift 

      experienced by the electron. 
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Figure 5.9: X+ Zeeman splitting as a function of applied magnetic field for constant  

bias -2.0V. A discontinuous jump occurs at           T. 

The difference between the two curves in figure 5.9 gives the OHS (in accordance with 
equation 5.8):  

  

                     

 

 

(5.9) 

 
The energy shift with circular excitation in figure 5.9 is smaller than with linearly polarised 

excitation, i.e.        , which indicates that the nuclear spins align to build up an effective 

magnetic field      opposite to the external field   . The helicity of the exciation relative to the 

external field direction is important166; with    no discontinuity is observed, i.e.         telling 
us that the nuclear spin system does not polarise to an appreciable degree when the pumping 

would correspond to an effective nuclear field      aligned parallel to   . 
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Figure 5.10(a) shows the measured OHS at constant bias -2.0V, deduced from data in 
figure 5.9 according to eq. 5.9. As the external field is ramped up the OHS increases and 

compensates the electron Zeeman energy, keeping the total electron spin splitting     
              small, which ensures that electron-nuclear flip-flops and further build-up of 

nuclear spin polarisation remains possible. At the critical field           T the nuclear 

polarisation reaches saturation; any increase in external field    from this point increases the 
electron spin splitting, rapidly making the flip-flop processes energetically difficult. Here, the 
system is unable to maintain nuclear polarisation and through negative feedback via the electron 
Zeeman energy a drastic collapse of OHS occurs, coinciding with the discontinuity in figure 5.9. 

As the external field is swept back down and the electron Zeeman splitting     gradually 

decreases an OHS around zero is observed, until a critical field         T where the Zeeman 

energy is small enough for flip-flops to take place and the OHS recovers rapidly, this time 

through positive feedback via    . Clearly the system possesses a memory effect; the reaction to 
a change in magnetic field depends strongly on the history of the system. 

Figure 5.10 (b) shows the degree of circular polarisation    of    measured 

simultaneously with the OHS. The dip just before       can be qualitatively explained by 

considering that as we approach the critical field the electron spin splitting     is decreasing 

which (i) leads to an increased flip-flop rate as the system tries to maintain          and (ii) 

removes the stabilising effect of large     against nuclear fluctuations    
175. Both effects lead 

to reduced observed electron spin polarisation. 
At two different bias voltages, -1.1V and -2.8V, we observe qualitatively similar OHS 

bistabilities as illustrated in figure 5.10(c-f). The critical fields, however, are lower than at -2.0V as 
summarised in figure 5.11(a), reflecting that the DNP conditions change with bias. To shed more 

light on the parameters governing the system we use the implicit equation 5.6 for      presented 

in section 5.2, repeated here for convenience:  
 

 
         

  ̃ ̃

              
 (〈 ̂ 〉  〈 ̂ 〉 ) 

 

(5.6) 

 

The longitudinal electron g-factor    can be accurately determined from experimental data at the 

critical field       by considering that there         (          )   , i.e. |         |  
|     |

166,176. For the quantum dot studied here we find a slight variation of ~10% in    with 
voltage, see figure 5.10 panels (a), (c) and (e). 

By solving equation 5.6 we can model the observed OHS and extract parameters 
characterising the electron-nuclei spin interaction. We find that the most sensitive parameters are 

the electron correlation time   
  and the nuclear depolarisation time    , determined primarily by 

the critical fields       and      , and we fit these manually. Table 5.1 below summarises all 

parameters going into equation 5.6. Figures 5.10(a,c,e) include the resulting fits to the OHS 
(courtesy of L. Bouet and B. Urbaszek), which show good qualitative agreement. Figure 5.11(b) 
summarises the fitted parameters as a function of applied bias voltage. At -2.0V, where the largest 

OHS can be built up, we find a minimum for   
  and a maximum for    . Away from -2.0V   

  

increases while     decreases. Such reciprocal behaviour of   
  and     has been observed 

before168 and that     depends on   
  can be expected; long spin memory times are observed for 

unpopulated quantum dots177, i.e. de-polarisation is linked to the presence of an electron, 

characterised by   
 . The depolarisation mechanism could be direct through Knight field 

fluctuations, or indirect through local modification of the electric field gradients, i.e. the nuclear 
quadrupole effects, when an electron is present. 
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Parameter Description Value 

   Electron g-factor (experimentally determined) -0.404 to -0.43 

 ̃ Average hyperfine constant 47 μeV 

 ̃  ̃  ∑           (      )

 

 
13 

  Number of nuclei in confined electron wavefunction.       

〈 ̂ 〉 Average electron spin z-component directly after 
initialisation of electron spin     

 

 
     

   Phenomenological parameter, representing strength of 
quadrupolar effects 

0.4 T 

    Nuclear depolarisation time in zero field 500 μs 

    Nuclear depolarisation time in high field Fitting parameter 

  
  Electron hyperfine interaction correlation time Fitting parameter 

Table 5.1: Summary of parameters used in OHS fitting. 

 

 
Figure 5.10: Overhauser shift (OHS) bistabilities and associated degree of circular 

polarisation (  ) in magnetic field sweeps at three different bias voltages.  
(a)-(b): at -1.1V (c)-(d) at -2.0V and (e)-(f) at -2.8 V. Blue filled circles are experimental results 

sweeping field    up, red triangles when sweeping    down. Solid lines are fitted curves 

(courtesy of L. Bouet and B. Urbaszek), using parameters    and      as free parameters. 

Electron g-factors    were experimentally determined. 

 

0
20
40
60
80

100
120

0
20
40
60
80

100
120

c= 384 ps
Td= 285 s
ge= - 0.43

-1.1 V

 

 

O
H

S
 (

eV
) (c) -1.1 V

0.4

0.6

0.8

c(d)

 

 

 

-2.0 V(a)

 
 

O
H

S
 (

eV
) c= 66 ps

Td= 3050 s
ge= - 0.404

0.6

0.7

0.8
c-2.0 V(b)

 

 

0 1 2 3 4 5
0

20
40
60
80

100
120

c= 285 ps
Td= 350 s
ge= - 0.43

-2.8V(e)

 

O
H

S
 (

eV
)

Bz (T)
0 1 2 3 4 5 6

0.2

0.3

0.4

0.5

0.6
c-2.8 V(f)

 

 

Bz (T)



104 
 

 

-2.8 -2.0 -1.1
0

1

2

3

4

5

Bz,c2B z (
T)

Bias (V)

Bz,c1(a)

-2.8 -2.0 -1.1
0

100

200

300

400 (b)

Bias (V)

 c (
ps

)

0

1000

2000

3000

T d
 (

s)

 
Figure 5.11: (a) Experimentally determined critical field sweeping magnetic field up 

(     ) and down (     ) for different applied bias. (b) System parameters fitted using bistability 

curves in figure 5.10, electron hyperfine correlation time    and nuclear depolarisation time    . 

 
A very direct way to probe the voltage control over DNP effects, enabled by the wide 

tuning range of our device, is to scan the bias while pumping the quantum dot with polarised 
electrons, and observe how the OHS changes during the bias scan178. The measurements start in 

zero magnetic field and we slowly increase the field strength until the desired magnitude    is 

reached, all the time exciting the carriers with   -polarised light and keeping the bias at -2.0V, 
the most favourable point for DNP. Then we sweep the applied voltage from -2.0V to -0.5V 

near the end of the range of existence of    and back again, while recording PL spectra for 
determination of OHS and circular polarisation. Based on the zero-field experiments (figure 5.8) 
and the magnetic field sweep bistabilities (figure 5.10) we can expect that as we change the bias 

voltage away from -2.0V we change   
  and    , i.e. the conditions for DNP. Figures 5.12 show 

the results for        T (panels a, b) and      T (panels c, d) respectively. Comparing with 

figure 5.10(a) (bias constant at -2.0V) we can note that          for both of our chosen 

magnetic field strengths. For         T (figure 5.12 (a)) we see a collapse of the OHS near -

1.0V, accompanied again by a drop in circular polarisation (figure  5.12(b)) as      . When 
sweeping the voltage back towards -2.0V a revival of the OHS is observed at -1.7V when the 

electron hyperfine correlation time   
  becomes shorter again (see figure 5.11(b)).  

For      T we see a similarly sudden collapse of the OHS, but no recovery. This is not 
surprising, as comparing again with figure 5.10 (c) we can see that even at the optimal conditions  
(-2.0V) the recovery happens first at ~2 T. The Zeeman splitting at 3T is simply too large for 
flip-flops to take place to any considerable degree, and the positive feedback mechanism 
associated with a revival never kicks in. 
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Figure 5.12: Dynamic nuclear polarisation in bias scans. (a) OHS exhibiting bistability in 

bias scan at constant magnetic field        T (b) associated degree of circular polarisation. (c) 

OHS during bias scan at      T not exhibiting bistable behaviour. (d) associated degree of 
circular polarisation. 

 
To conclude the measurements in Faraday geometry, we have been able to control the 

width of the DNP bistability in magnetic field sweeps, achieving internal effective nuclear 
magnetic fields of several Tesla. Furthermore, we could observe bistable behaviour directly as a 
function of applied voltage. Our modelling of the OHS shows good qualitative and quantitative 
agreement, suggesting that the dynamics of the electron-nuclei interactions are primarily 

governed by the hyperfine correlation time   
  and the nuclear depolarisation time    , that they 

are mutually dependent and that they can be controlled by an applied voltage. 
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5.3.5 Electron depolarisation experiments in transverse magnetic 

field 
 
An electron spin aligned along the longitudinal/growth axis (z), subject to a transverse 

magnetic field    is expected to precess around the magnetic field axis with the Larmor 

frequency   |        |. Averaged over the spin lifetime   
  the observed degree of circular 

polarisation, directly related to the average electron spin, is expected to have a standard Hanle 

depolarisation curve with Lorentzian magnetic field dependence               
      

   

with HWHM        |    |    
  155. For single InP/InGaP179 and InAs/GaAs161 quantum 

dots radical departures from this scenario have been observed, with significantly broadened 
depolarisation curves and strikingly non-linear, hysteretic behaviour. 

Here, we perform Hanle depolarisation measurements in transverse magnetic field on the 
same quantum dot as was used in previous sections, complementing the observations in 

longitudinal field. The    PL polarization once again provides the means to observe the electron 
depolarisation. Experiments are started in absence of external magnetic field, and the quantum 

dot is non-resonantly excited in the wetting layer by a circularly polarised (  ) cw laser. The 

magnetic field    is gradually increased and the effect on electron polarisation is observed via the 

     -polarised    PL. 
Figure 5.13(a) shows the measured de-polarisation curve at bias -1.7V where the electron 

polarisation is maximised (figure 5.8(b)). The initial polarisation at      is 60% and remains 

almost constant up to 0.2T, after which it gradually drops to ~35% at ~0.5T. For          
     the polarisation drops slower again, but collapses suddenly at 0.95T. After this point the 
electron polarisation is completely lost. Without interrupting the experiment, the magnetic field is 
ramped down, and a sudden revival of circular polarisation is observed at 0.8T, after which the 
system more or less follows the previously observed curve. Figure 5.13(a) also shows a 
Lorentzian depolarisation curve assuming a 1 ns electron spin lifetime, which illustrates the 
drastic departure of our experimental observations from the standard Hanle effect. The highly 
nonlinear, hysteretic behaviour observed here is in line with previous work on InAs/GaAs single 
QDs161.  

The anomalous Hanle effect in transverse fields has been explained in terms of dynamic 
nuclear polarisation, but with the remarkable difference that electron spins with initial alignment 
along the longitudinal axis (z) are now transferring spin to the nuclei to build up a transverse 

effective nuclear field161     , in contrast to Faraday geometry where a longitudinal Overhauser 

field resulted. Supporting this interpretation is the fact that we do not observe any significant 

OHS between the detected      -PL. The effect of      is to cancel the external field   , so 

that the electron spin splitting remains small  and spin transfer to nuclei can continue to take 
place, similar to the Faraday geometry measurements. A microscopic theory exactly how the spin 
transfer occurs is still lacking though. 
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Figure 5.13: Electron depolarisation experiments in transverse magnetic field   .  

(a) Circular polarisation at constant bias -1.7V exhibiting clearly anomalous Hanle effect and a 
bistable region when sweeping field up (blue circles) and down (red triangles). A Lorentzian for 
an assumed electron spin lifetime of 1 ns highlights the difference to standard Hanle curves. 
(b) Circular polarisation measured at -1.4V (open green squares) and -1.1V (open magenta 
diamonds) with circular excitation, and at -1.7V with elliptical polarisation (solid green squares, 
solid magenta diamonds). The black solid line shows a Lorentzian fit to the -1.1V depolarisation 
curve. 

 
 
Inspired by the observations in Faraday geometry, where the electron spin correlation 

time and nuclear depolarisation time could be voltage controlled in our charge-tuneable device, 
more depolarisation measurements were performed at -1.4V and -1.1V, see figure 5.13(b). For 
both -1.4V and -1.1V the initial electron polarisation is lower (46% and 25% respectively), as 
expected based on previous zero-field measurements in figure 5.8(b). The depolarisation curve at  
-1.4V is still broadened, but no abrupt collapse is observed. At -1.1V the curve fits rather well to 

a Lorentzian curve, allowing us to extract a spin lifetime   
      ps (the electron g-factor was 

determined to be 0.181 in separate measurements), a reasonable value only slightly shorter than 
typical radiative lifetimes. 

To rule out that the different behaviour at different bias voltages is solely down to the 

different initial polarisations      , we operate the device at -1.7V and adjust the excitation to be 
elliptical using the liquid crystal retarders, achieving exactly the same initial polarisations as for     
-1.4V and -1.1V with fully circularly polarised excitation. The results are shown in figure 5.13(b). 
The curves are clearly broader than the ones done at -1.4V and -1.1V, and we can conclude that 
the changing behaviour with bias is not mainly determined by initial polarisation. We can also 
conclude that by controlling the bias, we can tune the electron-nuclear system from the 
anomalous to the standard Hanle regime. Based on the measurements in Faraday geometry a 

reasonable hypothesis is that the electron correlation time   
  plays a key role also in the 

anomalous Hanle effect. 
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5.4 Conclusions 
 
 
The intricate coupling between a single carrier spin and the mesoscopic nuclear spin 

system gives rise to strong internal effective fields, up to several Tesla, and highly non-linear 
effects, as demonstrated by bistable OHS in Faraday geometry (figures 5.10, 5.12) and in electron 
depolarisation experiments in Voigt geometry (figure 5.13). In Faraday geometry the 

measurements showed that the electron correlation time   
  could be controlled, and that the 

nuclear spin relaxation time     was co-dependent. This hints at Knight field fluctuations 
(obviously directly dependent on the presence of an electron) playing an important role in nuclear 

relaxation. Furthermore the voltage control of   
  and     allowed us to observe DNP hysteresis 

directly as a function of applied bias over a much wider range than has been previously 
possible178. 

In Voigt geometry the anomalous Hanle effect was observed, with drastically broadened 
depolarisation curves and strongly non-linear and hysteretic behaviour. In contrast to previous 
reports on anomalous Hanle effect in InAs QDs161 non-resonant excitation in the wetting layer 
was used, showing that the effect only relies on the initial creation of spin-polarised electrons. It 
was also demonstrated that by changing bias voltage the system could be tuned from the 

anomalous to the standard Hanle regime. In light of the bias dependence of   
  seen in Faraday 

DNP experiments, it is likely that the electron correlation time    
  playing a key role also for the 

anomalous Hanle effect. 
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6 Conclusions and outlook 
 
 
The need for improved single photon and entangled-pair sources to replace the SPDC 

sources conventionally used in optical quantum information science has been emphasized at 
several points in this thesis. Semiconductor quantum dots offer an interesting alternative base 
upon which a quantum light source technology could be built, with many degrees of freedom for 
the “quantum engineer” to explore, optimise and adapt according to application. Electrically 
driven entangled light sources based on quantum dots are from an application point of view 
particularly attractive: semiconductor technology offers the possibility of miniaturisation and 
integration, and purely electrical operation would reduce the overall complexity by getting rid of 
the driving laser systems.  

In chapter 2 an entangled-light-emitting diode (ELED) based on self-assembled InAs 
quantum dots was employed in two-photon-interference experiments. In contrast to previous 
work on quantum dots which has focussed mainly on emission from charged excitons, the 
interfering photons here were part of entangled photon pairs, with entanglement fidelities up to 
0.87±0.04. Post-selective two-photon interference visibility of up to 0.60±0.05 was measured, 
showing that a majority of the photons detected simultaneously did indeed interfere. 

Encouraged by the two-photon interference result the first teleportation setup utilising 
electrically generated entangled light was implemented (chapter 3).  Six states symmetrically 
distributed over the Poincaré sphere (H, V, D, A, R, L) were teleported with an average fidelity of 
0.704±0.016. Since the classical limit for the chosen set of states is 2/3, we could conclude that 
quantum teleportation did indeed take place. 

Recognizing that applications are likely to require teleportation of photons from a source 
different to the ELED, the teleportation setup was modified to accommodate a CW laser, as 
presented in chapter 4. As a stepping stone towards teleportation, it was verified that the two-
photon interference between the dissimilar sources worked, and in addition this allowed us to 
observe quantum beats on a timescale of ~100 ps when detuning the laser from the quantum dot 
generated photons. This is to the best of our knowledge the first observation of such beats for 
quantum dots, previously only reported for very long photon wavepackets originating from 
atomic transitions. Proceeding to teleportation experiments, it was found that the highly coherent 
laser photons reduces the overall sensitivity of the quantum teleportation process to dephasing 
events in the quantum dot, and the average teleportation fidelity for six states increased to 
0.76±0.012. Single-qubit tomography revealed that the fine-structure splitting (FSS) of the 
quantum dot exciton state is carried through to an evolution of the teleported state, which 
highlights the importance of containing the FSS problem. 

Controlling nano-scale systems such as quantum dots requires a deep understanding of 
the material physics, exemplified by the fact that even effects on the hyperfine level influence 
entangled light generation. Thus research efforts into QD material science are strongly motivated 
by applications. The hyperfine interaction of a confined electron spin with the mesoscopic 
nuclear host lattice was explored in collaboration with INSA-Toulouse, France. The main result, 
presented in chapter 5, is demonstration of voltage control of nuclear spin polarisation dynamics 
in a charge-tuneable structure, which was attributed to bias control of the electron spin 
correlation time and the nuclear depolarisation time. Furthermore, the anomalous Hanle effect, 
previously only observed with quasi-resonant excitation for InAs QDs, was observed under non-
resonant conditions, and could be voltage tuned into the normal Hanle regime. 
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Better quantum light sources will result from development on two fronts: (i) improved 
quantum dot quality, e.g. reducing sources of photon decoherence such as charge fluctuations in 
nearby traps and wetting layer, and (ii) improved device designs, e.g. using optical cavity effects 
for Purcell enhanced emission, potentially reducing the problem with exciton fine-structure while 
improving source efficiency. Electrically driven devices, such as the ELED, need to have faster 
electrical response for high quality pulsed operation. This was only briefly explored in section 
2.2.2, but the limited study illustrates the challenge. Faster devices could be achieved by reducing 
the device area (capacitance) and identifying resistive elements. It is also possible that more 
advanced resonant tunnelling approaches such as Benson et al.’s original proposal56 could prove 
fruitful. 

Quantum dot based light sources have been shown to be in possession of many of the 
qualities sought after in optical quantum information processing; low multiple photon emission 
probability, high purity (coherence)32,108, high efficiency70 and, as demonstrated in this thesis, 
compatibility with electrical operation without external lasers and the ability to generate entangled 
light. These properties make quantum dots one of the prime candidates to realise the quantum 
light sources for the future. It is a grand challenge for the future to improve and unify several of 
these properties in one light source, but great progress has been made in recent years. Parallel to 
being application-driven, optical quantum information offers the researcher a window into the 
fascinating and often counter-intuitive quantum physical world. The great potential promised by 
quantum technology combined with the bringing together of different disciplines such as 
semiconductor physics, information science and quantum mechanics (and for those so inclined, 
even philosophy180) is very stimulating for the researcher. Without doubt this will continue to 
inspire and motivate great research efforts into semiconductor based quantum light emitters in 
the coming years. 
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