24 research outputs found

    Spatial behavior and habitat use in widely separated breeding and wintering distributions across three species of long-distance migrant <i>Phylloscopus</i> warblers

    Get PDF
    Aim: To investigate the ecological relationship between breeding and wintering in specialist and generalist long-distance migratory species, and the links between densities and range sizes. Location: Denmark, Senegal and Ghana. Methods: We use radio tracking to study spatial behavior and habitat use in three morphologically and ecologically similar and closely related Phylloscopus species on their widely separated breeding and wintering distributions. During wintering and breeding, willow warblers P. trochilus (winter: n = 9, breeding: n = 13), chiffchaffs P. collybita (n = 11, n = 7), and wood warblers P. sibilatrix (n = 17, n = 14) were tracked. Results: Willow warblers P. trochilus increased home range sizes in winter, whereas it was similar in chiffchaffs P. collybita and wood warblers P. sibilatrix, in both seasons. Home ranges overlapped more in winter than in the breeding season. In winter, home range overlap was similar among species but larger overlap during breeding was indicated for willow warblers. Tree cover was unrelated to home range size but significantly higher in breeding than in winter in all species. However, whereas willow warblers and wood warblers maintained some degree of tall tree cover inside their home ranges in winter, chiffchaffs changed from more than 80% to <1% tree cover, indicating a niche shift. Main conclusions: Individuals of all three species showed changes between breeding and wintering areas in spatial behavior and habitat availability, with larger overlap in winter. The differences in patterns were potentially related to being generalist (willow warbler) or specialist (chiffchaff and wood warbler). These ecological relationships are important for the conservation of migrants and for understanding the link between breeding and wintering distributions and ecology

    Accounting for predator species identity reveals variable relationships between nest predation rate and habitat in a temperate forest songbird.

    Get PDF
    Nest predation is the primary cause of nest failure in most ground-nesting bird species. Investigations of relationships between nest predation rate and habitat usually pool different predator species. However, such relationships likely depend on the specific predator involved, partly because habitat requirements vary among predator species. Pooling may therefore impair our ability to identify conservation-relevant relationships between nest predation rate and habitat. We investigated predator-specific nest predation rates in the forest-dependent, ground-nesting wood warbler Phylloscopus sibilatrix in relation to forest area and forest edge complexity at two spatial scales and to the composition of the adjacent habitat matrix. We used camera traps at 559 nests to identify nest predators in five study regions across Europe. When analyzing predation data pooled across predator species, nest predation rate was positively related to forest area at the local scale (1000 m around nest), and higher where proportion of grassland in the adjacent habitat matrix was high but arable land low. Analyses by each predator species revealed variable relationships between nest predation rates and habitat. At the local scale, nest predation by most predators was higher where forest area was large. At the landscape scale (10,000 m around nest), nest predation by buzzards Buteo buteo was high where forest area was small. Predation by pine martens Martes martes was high where edge complexity at the landscape scale was high. Predation by badgers Meles meles was high where the matrix had much grassland but little arable land. Our results suggest that relationships between nest predation rates and habitat can depend on the predator species involved and may differ from analyses disregarding predator identity. Predator-specific nest predation rates, and their relationships to habitat at different spatial scales, should be considered when assessing the impact of habitat change on avian nesting success

    Reproductive success of the wood warbler Phylloscopus sibilatrix varies across Europe

    Get PDF
    Differences in population trends across a species’ breeding range are ultimately linked to variation in demographic rates. In small songbirds, demographic rates related to fecundity typically have strong effects on population trends. Populations of a forest songbird, the wood warbler Phylloscopus sibilatrix, have been declining in many but not all regions of the European breeding range. We investigated if clutch size, hatching rate, nest survival and number of fledglings vary across Europe, and if nest survival is related to differences in the regionally dominant nest predator class (birds versus mammals). From 2009 to 2020, we monitored 1896 nests and used cameras at a subsample of 645 nests in six study regions: the United Kingdom (mid-Wales, Dartmoor, the New Forest), Germany (Hessen), Switzerland (Jura mountains) and Poland (Białowieża National Park). Number of fledglings was lowest in the New Forest (1.43 ± CI 0.23), intermediate in Jura (2.41 ± 0.31) and Białowieża (2.26 ± 0.24) and highest in mid-Wales (3.02 ± 0.48) and Dartmoor (2.92 ± 0.32). The reason for low reproductive success in the New Forest, Jura and Białowieża was low nest survival, and large clutch sizes in Białowieża did not compensate for high nest losses. High reproductive success in mid-Wales and Dartmoor was due to high nest survival and large clutch sizes. Overall predation rates were similar everywhere despite variation between the regions in the dominant nest predator class. Unsuccessful nests in mid-Wales were mainly predated by birds; in Dartmoor, the New Forest, Hessen and Jura similarly by birds and mammals; and in Białowieża exclusively by mammals. Regional reproductive success does not match the population trends recently reported for the wood warbler in the six study regions (i.e. high reproduction ≠ positive trend). Annual survival may be a decisive factor, but it is difficult to quantify for a nomadic species such as the wood warbler that rarely returns to the same breeding locations

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    The role of cultivated versus wild seeds in the diet of European turtle doves (Streptopelia turtur) across European breeding and African wintering grounds

    Get PDF
    Agricultural intensification is a major driver in species declines, with changes in land use resulting in widespread alteration of resource availability. An increase in anthropogenic food resources, alongside decreasing natural resources, has resulted in species undergoing dietary changes that can have important ecological consequences, particularly for declining species. Here we use high-throughput sequencing to analyze the diet of the migrant European turtle dove (Streptopelia turtur), a species that has experienced significant population decline throughout its European range. We analyze the diet of this species on both breeding and wintering grounds to gain an understanding of resource use throughout the annual cycle and compare areas of more and less intensive agriculture in western and eastern Europe, respectively. We examine associations with body condition, spatiotemporal variation and the source of food (wild or cultivated). We identified 121 taxonomic units in the diet, with significant variation across sampling seasons, and very little overlap between the breeding and wintering seasons, as well as high levels of cultivated food resources in the diet of turtle doves in both breeding and wintering grounds, with the highest proportion of wild seeds in the diet occurring in birds caught in Hungary, where agricultural intensity was lowest. We detected no association between body condition and the consumption of cultivated food resources. We demonstrate the importance of wild resources in birds on the wintering grounds as they approach migration, where body condition increased as the season progressed, concurrent with an increased consumption of wild seeds. These findings indicate the importance of habitats rich in wild seeds and the need to consider food availability on the wintering grounds, as well as the breeding grounds in turtle dove conservation strategies

    Predicting the consequences of human disturbance, urbanisation and fragmentation for a woodlark Lullula arborea population

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Quantifying density dependence in a bird population using human disturbance

    No full text
    Although density dependence has long been recognised as vital to population regulation, there have been relatively few studies demonstrating it spatially in wildlife populations, often due to the confounding effects of variation in habitat quality. We report on a study of woodlarks Lullula arborea, a species of European conservation concern, breeding on lowland heath in Dorset, England. We take the novel approach of utilising the birds’ response to human disturbance, which resulted in much of the variation in density but had no direct impact on demographic rates. Within years, in sites with greater density there were smaller mean chick masses, lower post-fledging survival, and higher rates of nestling mortality attributed to starvation. The effects on clutch size and fledging success were confounded by the area of grassland within a site. There was no effect on brood size. Density dependence also operated within sites between years: as density increased there were reductions in mean chick mass and post-fledging survival, while nestling mortality attributed to starvation increased. Density-dependent effects on clutch size were only weakly regulatory, whereas density-dependent starvation and post-fledging mortality rates contributed strongly to differences in overall breeding output. Heavier chicks (when 7 days old) were significantly more likely to fledge and less likely to starve. Broods with heavier chicks were more likely to supply recruits to the breeding population. Nestling mass was not a factor in survival in the immediate post-fledging period, suggesting that density-dependent processes act independently on this stage. We conclude that the number of birds per hectare of suitable habitat is a valid means of expressing density, and that habitat acts as a surrogate for food abundance through which density dependence operates on the woodlark population
    corecore