48 research outputs found

    Sustained VWF‐ADAMTS‐13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction

    Get PDF
    Background Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. Patients and methods Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). Results ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. Conclusion Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence

    ADAMTS13 regulation of VWF multimer distribution in severe COVID‐19

    Get PDF
    Background Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. Objectives This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. Patients and Methods Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. Results We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. Conclusions These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Phosphorylation of AKT pathway proteins is not predictive of benefit of taxane therapy in early breast cancer

    No full text
    Results from the NSABP B-28 trial suggest AKT activation may predict reduced benefit from taxanes following standard anthracycline therapy. Pre-clinical data support a link between PI3 K/AKT signalling and taxane resistance. Using the UK taxotere as adjuvant chemotherapy trial (TACT), we tested the hypothesis that activation of AKT or downstream markers, p70S6K or p90RSK, identifies patients with reduced benefit from taxane chemotherapy. TACT is a multi-centre open-label phase III trial comparing four cycles of standard FEC (fluorouracil, epirubicin, cyclophosphamide) followed by four cycles of docetaxel versus eight cycles of anthracycline-based chemotherapy. Samples from 3,596 patients were available for the current study. We performed immunohistochemical analysis of activation of AKT, p70S6 K and p90RSK. Using a training set with multiple cut-offs for predictive values (10 % increments in expression), we found no evidence for a treatment by marker interaction for pAKT473, pS6 or p90RSK. pAKT473, pS6 and p90RSK expression levels were weakly correlated. A robust, preplanned statistical analysis in the TACT trial found no evidence that pAKT473, pS6 or p90RSK identifies patients deriving reduced benefit from adjuvant docetaxel. This result is consistent with the recent NASBP B28 study where the pAKT473 effect is not statistically significant for the treatment interaction test. Therefore, neither TACT nor NASBP-B28 provides statistically robust evidence of a treatment by marker interaction between pAKT473 and taxane treatment. Alternative methods for selecting patients benefitting from taxanes should be explored

    Human epidermal growth factor receptor 2 status correlates with lymph node involvement in patients with estrogen receptor (ER) -negative, but with grade in those with ER-Positive early-stage breast cancer suitable for cytotoxic chemotherapy

    No full text
    Purpose Human epidermal growth factor receptor 2 (HER-2) expression is associated with increased risk of high-grade disease, nodal metastasis, and absence of estrogen receptors (ERs) in early breast cancer. We tested interactions between ER and HER-2 to determine if they may modulate breast cancer nodal metastasis and proliferation. Patients and Methods Tumors from the Cancer Research UK Taxotere as Adjuvant Chemotherapy phase III trial were tested for HER-2 using current diagnostic procedures. ER status, progesterone status, clinicopathologic characteristics, and patient age were included in a logistic regression analysis to identify associations with HER-2 status (positive v negative). Results A total of 841 (23.6%) of 3,565 samples were HER-2 positive (3+ by immunohistochemistry or positive by fluorescent in situ hybridization). ER-negative tumors were more likely to be HER-2 positive than were ER-positive tumors (odds ratio [OR] = 1.87, ER negative v ER positive; P < .001). For ER-positive tumors, risk of HER-2 positivity increased by grade (OR = 7.6, grade 3 v grade 1; P < .001) but not nodal status (OR = 1.3, four or more positive nodes v node negative; P = .08). Conversely, ER negative node-positive tumors were markedly more frequently HER-2 positive than node-negative cases (OR = 3.05, four or more positive nodes v node negative; P < .001) but independent of grade (OR = 0.82, grade 3 v grade 1; P = .76). Conclusion In early breast cancer patients selected for cytotoxic chemotherapy, we identified significant interactions between HER-2 and ER expression that correlate with tumor pathology. In ER-positive breast cancers, HER-2 expression correlates with grade, not nodal metastasis. In ER-negative breast cancers, HER-2 expression correlates with increased nodal positivity, not grade. ER and HER-2 expression may modify tumor pathology via ER/HER-2–mediated cross talk

    Persistent endotheliopathy in the pathogenesis of long COVID syndrome

    Get PDF
    Background Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this “long COVID” syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. Objectives To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. Patients and Methods Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. Results Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI −2.57 to −1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15–416 nM/min), and peak thrombin (p < .0001, 95% CI 39–93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09–0.57 IU/ml; p = .009, 95% CI 0.06–0.5 IU/ml; p = .04, 95% CI 0.03–0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01–2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. Conclusions Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis
    corecore