286 research outputs found

    Combining a leadership course and multi-source feedback has no effect on leadership skills of leaders in postgraduate medical education. An intervention study with a control group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leadership courses and multi-source feedback are widely used developmental tools for leaders in health care. On this background we aimed to study the additional effect of a leadership course following a multi-source feedback procedure compared to multi-source feedback alone especially regarding development of leadership skills over time.</p> <p>Methods</p> <p>Study participants were consultants responsible for postgraduate medical education at clinical departments. Study design: pre-post measures with an intervention and control group. The intervention was participation in a seven-day leadership course. Scores of multi-source feedback from the consultants responsible for education and respondents (heads of department, consultants and doctors in specialist training) were collected before and one year after the intervention and analysed using Mann-Whitney's U-test and Multivariate analysis of variances.</p> <p>Results</p> <p>There were no differences in multi-source feedback scores at one year follow up compared to baseline measurements, either in the intervention or in the control group (p = 0.149).</p> <p>Conclusion</p> <p>The study indicates that a leadership course following a MSF procedure compared to MSF alone does not improve leadership skills of consultants responsible for education in clinical departments. Developing leadership skills takes time and the time frame of one year might have been too short to show improvement in leadership skills of consultants responsible for education. Further studies are needed to investigate if other combination of initiatives to develop leadership might have more impact in the clinical setting.</p

    After LUX: The LZ Program

    Full text link
    The LZ program consists of two stages of direct dark matter searches using liquid Xe detectors. The first stage will be a 1.5-3 tonne detector, while the last stage will be a 20 tonne detector. Both devices will benefit tremendously from research and development performed for the LUX experiment, a 350 kg liquid Xe dark matter detector currently operating at the Sanford Underground Laboratory. In particular, the technology used for cryogenics and electrical feedthroughs, circulation and purification, low-background materials and shielding techniques, electronics, calibrations, and automated control and recovery systems are all directly scalable from LUX to the LZ detectors. Extensive searches for potential background sources have been performed, with an emphasis on previously undiscovered background sources that may have a significant impact on tonne-scale detectors. The LZ detectors will probe spin-independent interaction cross sections as low as 5E-49 cm2 for 100 GeV WIMPs, which represents the ultimate limit for dark matter detection with liquid xenon technology.Comment: Conference proceedings from APS DPF 2011. 9 pages, 6 figure

    Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector

    Get PDF
    The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6±0.2stat±0.4sys)×10−3(2.6\pm0.2_{\textrm{stat}}\pm0.4_{\textrm{sys}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1} in a 118~kg fiducial volume. The observed background rate is (3.6±0.4stat)×10−3(3.6\pm0.4_{\textrm{stat}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1}, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
    • …
    corecore