6,471 research outputs found

    Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission

    Full text link
    Brown and Mallik (BM) recently showed that, for hot sources, recombination of non-thermal electrons (NTR) onto highly ionised heavy ions is not negligible compared to non-thermal bremsstrahlung (NTB) as a source of flare hard X-rays (HXRs) and so should be included in modelling non-thermal HXR flare emission. In view of major discrepancies between BM results for the THERMAL continua and those of the Chianti code and of RHESSI solar data, we critically re-examine and correct the BM analysis and modify the conclusions concerning the importance of NTR. Although the analytic Kramers expression used by BM is correct for the purely hydrogenic recombination cross section, the heuristic expressions used by BM to extend the Kramers expression beyond the `bare nucleus' case to which it applies had serious errors. BM results have therefore been recalculated using corrected expressions, which have been validated against the results of detailed calculations. At T ~ 10-30 MK the dominant ions are Fe 22+, 23+, 24+ for which BM erroneously overestimated NTR emission by around an order of magnitude. Contrary to the BM claim, NTR in hot flare plasmas does NOT dominate over NTB, although in some cases it can be comparable and so still very important in inversions of photon spectra to derive electron spectra, especially as NTR includes sharp edge features. The BM claim of dominance of NTR over NTB in deka-keV emission is incorrect due to a serious error in their analysis. However, the NTR contribution can still be large enough to demand inclusion in spectral fitting, the spectral edges having potentially serious effects on inversion of HXR spectra to infer fast electron spectra.Comment: 6 pages, 8 figures, 1 tabl

    The vertical metal insulator semiconductor tunnel transistor: A proposed Fowler-Nordheim tunneling device

    No full text
    We propose a new field-effect transistor, the vertical metal insulator semiconductor tunnel transistor (VMISTT) which operates using gate modulation of the Fowler-Nordheim tunneling current through a metal insulator semiconductor (M-I-S) diode. The VMISTT has significant advantages over the metal-oxide-semiconductor field-effect transistor in device scaling. In order to allow room-temperature operation of the VMISTT, the tunnel oxide has to be optimized for the metal-to-insulator barrier height and the current-voltage characteristics. We have grown TiO2 layers as the tunnel insulator by oxidizing 7 and 10 nm thick Ti metal films vacuum-evaporated on silicon substrates, and characterized the films by current-voltage and capacitance-voltage techniques. The quality of the oxide films showed variations, depending on the oxidation temperatures in the range of 450-550 degrees C. Fowler-Nordheim tunneling was observed at low temperatures at bias voltage of 2 V and above and a barrier height of approximately 0.4 eV was calculated. Leakage currents present were due Schottky-barrier emission at room-temperature, and hopping at liquid nitrogen temperature

    Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of Gd2_{2}PdSi3_3

    Get PDF
    Electrical resistivity (ρ\rho), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd2_{2}PdSi3_3, crystallizing in an AlB2_2-derived hexagonal structure are reported. The well-defined minimum in ρ\rho at a temperature above N\'eel temperature (TN_N= 21 K) and large negative MR below \sim 3TN_N, reported earlier for the polycrystals, are reproducible even in single crystals. Such features are generally uncharacteristic of Gd alloys. In addition, we also found interesting features in other data, e.g., two-step first-order-like metamagnetic transitions for the magnetic field along [0001] direction. The alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be published in Phy. Rev. B (01 November 1999, B1

    Magnetic behaviour of Eu_2CuSi_3: Large negative magnetoresistance above Curie temperature

    Full text link
    We report here the results of magnetic susceptibility, electrical-resistivity, magnetoresistance (MR), heat-capacity and ^{151}Eu Mossbauer effect measurements on the compound, Eu_2CuSi_3, crystallizing in an AlB_2-derived hexagonal structure. The results establish that Eu ions are divalent, undergoing long-range ferromagnetic-ordering below (T_C=) 37 K. An interesting observation is that the sign of MR is negative even at temperatures close to 3T_C, with increasing magnitude with decreasing temperature exhibiting a peak at T_C. This observation, being made for a Cu containing magnetic rare-earth compound for the first time, is of relevance to the field of collosal magnetoresistance.Comment: To appear in PRB, RevTex, 4 pages text + 6 psFigs. Related to our earlier work on Gd systems (see cond-mat/9811382, cond-mat/9811387, cond-mat/9812069, cond-mat/9812365

    On the nucleon self-energy in nuclear matter

    Full text link
    We consider the nucleon self-energy in nuclear matter in the absence of Pauli blocking. It is evaluated using the partial-wave analysis of NNNN scattering data. Our results are compared with that of a realistic calculation to estimate the effect of this blocking. It is also possible to use our results as a check on the realistic calculations.Comment: 6 pages, 2 figure

    PT-symmetric supersymmetry in a solvable short-range model

    Full text link
    The simplest purely imaginary and piecewise constant PT\cal PT-symmetric potential located inside a larger box is studied. Unless its strength exceeds a certain critical value, all the spectrum of its bound states remains real and discrete. We interpret such a model as an initial element of the generalized non-Hermitian Witten's hierarchy of solvable Hamiltonians and construct its first supersymmetric (SUSY) partner in closed form.Comment: 3 figures, 1 tabl

    PT-symmetric square well and the associated SUSY hierarchies

    Full text link
    The PT-symmetric square well problem is considered in a SUSY framework. When the coupling strength ZZ lies below the critical value Z0(crit)Z_0^{\rm (crit)} where PT symmetry becomes spontaneously broken, we find a hierarchy of SUSY partner potentials, depicting an unbroken SUSY situation and reducing to the family of sec2\sec^2-like potentials in the Z0Z \to 0 limit. For ZZ above Z0(crit)Z_0^{\rm (crit)}, there is a rich diversity of SUSY hierarchies, including some with PT-symmetry breaking and some with partial PT-symmetry restoration.Comment: LaTeX, 18 pages, no figure; broken PT-symmetry case added (Sec. 6

    Frequency of the Three-phase R-C Coupled Oscillator Part I. Non-reactive Anode Load Resistance

    Get PDF
    corecore