5 research outputs found

    In vitro susceptibility testing of Candida and Aspergillus spp. to voriconazole and other antifungal agents using Etest ® : results of a French multicentre study

    No full text
    International audienceMinimum inhibitory concentrations (MICs) of the antifungal agent voriconazole were determined using the Etest(R) and compared with those of amphotericin B. itraconazole and fluconazole using 1986 clinical isolates of Candida spp. Voriconazole MICs were also compared with those of amphotericin B and itraconazole using 391 clinical isolates of Aspergillus spp. Voriconazole was found to have more potent activity and lower MIC values than amphotericin B, itraconazole and fluconazole against C. albicans, C. tropicalis, C. parapsilosis and C. kefyr. Against C. glabrata and C. krusei, voriconazole was more active than either of the other two azole antifungals but had similar activity to amphotericin B. For species of Aspergillus, MIC values of voriconazole were lower than those of amphotericin B and itraconazole against A. fumigatus and A. flavus, and were similar to those of amphotericin B against A. niger. Against A. terreus, MIC values for voriconazole and itraconazole were similar. A. terreus is known to be resistant to amphotericin B, and this was reflected in higher MIC values compared with those of voriconazole and itraconazole. Voriconazole therefore compares very favourably with other antifungal agents against a large number of clinical isolates of Candida and Aspergillus spp

    Geographic variation in the frequency of isolation and fluconazole and voriconazole susceptibilities of Candida glabrata: an assessment from the ARTEMIS DISK Global Antifungal Surveillance Program.

    No full text
    Geographic differences in frequency and azole resistance among Candida glabrata may impact empiric antifungal therapy choice. We examined geographic variation in isolation and azole susceptibility of C. glabrata. We examined 23 305 clinical isolates of C. glabrata during ARTEMIS DISK global surveillance. Susceptibility testing to fluconazole and voriconazole was assessed by disk diffusion, and the results were grouped by geographic location: North America (NA) (2470 isolates), Latin America (LA) (2039), Europe (EU) (12 439), Africa and the Middle East (AME) (728), and Asia-Pacific (AP) (5629). Overall, C. glabrata accounted for 11.6% of 201 653 isolates of Candida and varied as a proportion of all Candida isolated from 7.4% in LA to 21.1% in NA. Decreased susceptibility (S) to fluconazole was observed in all geographic regions and ranged from 62.8% in AME to 76.7% in LA. Variation in fluconazole susceptibility was observed within each region: AP (range, 50-100% S), AME (48-86.9%), EU (44.8-88%), LA (43-92%), and NA (74.5-91.6%). Voriconazole was more active than fluconazole (range, 82.3-84.2% S) with similar regional variation. Among 22 sentinel sites participating in ARTEMIS from 2001 through 2007 (84 140 total isolates, 8163 C. glabrata), the frequency of C. glabrata isolation increased in 14 sites and the frequency of fluconazole resistance (R) increased in 11 sites over the 7-year period of study. The sites with the highest cumulative rates of fluconazole R were in Poland (22% R), the Czech Republic (27% R), Venezuela (27% R), and Greece (33% R). C. glabrata was most often isolated from blood, normally sterile body fluids and urine. There is substantial geographic and institutional variation in both frequency of isolation and azole resistance among C. glabrata. Prompt species identification and fluconazole susceptibility testing are necessary to optimize therapy for invasive candidiasis

    Environmental distribution of Cryptococcus Neoformans and Cryptococcus Gattii around the Mediterranean basin.

    No full text
    In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts

    Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials

    No full text

    Progression of Geographic Atrophy in Age-related Macular Degeneration

    No full text
    corecore