498 research outputs found

    Graph Theory Applications in Advanced Geospatial Research

    Full text link
    Geospatial sciences include a wide range of applications, from environmental monitoring transportation to infrastructure planning, as well as location-based analysis and services. Graph theory algorithms in mathematics have emerged as indispensable tools in these domains due to their capability to model and analyse spatial relationships efficiently. This article explores the applications of graph theory algorithms in geospatial sciences, highlighting their role in network analysis, spatial connectivity, geographic information systems, and various other spatial problem-solving scenarios like digital twin. The article provides a comprehensive idea about graph theory's key concepts and algorithms that assist the geospatial modelling processes and insights into real-world geospatial challenges and opportunities. It lists the extensive research, innovative technologies and methodologies implemented in this domain

    Donor-Derived Cell-Free DNA as a Non-Invasive Biomarker for Graft Rejection in Kidney Transplant Recipients: A Prospective Study among the Indian Population

    No full text
    Monitoring graft health and detecting graft rejection is crucial for the success of post-transplantation outcomes. In Western countries, the use of donor-derived cell-free DNA (dd-cfDNA) has gained widespread recognition as a diagnostic tool for kidney transplant recipients. However, the role of dd-cfDNA among the Indian population remains unexplored. The recipients were categorized into two groups: the post-transplant recipient (PTR) group (n = 16) and the random recipient (RR) group (n = 87). Blood samples were collected daily from the PTR group over a 7-day period, whereas the RR group’s samples were obtained at varying intervals. In this study, we used a targeted approach to identify dd-cfDNA, which eliminated the need for genotyping, and is based on the minor allele frequency of SNP assays. In the PTR group, elevated dd-cfDNA% levels were observed immediately after transplantation, but returned to normal levels within five days. Within the RR group, heightened serum creatinine levels were directly proportional to increased dd-cfDNA%. Sixteen recipients were advised to undergo biopsy due to elevated serum creatinine and other pathological markers. Among these sixteen recipients, six experienced antibody-mediated rejection (ABMR), two exhibited graft dysfunctions, two had active graft injury, and six (37.5%) recipients showed no rejection (NR). In cases of biopsy-proven ABMR and NR, recipients displayed a mean ± SD dd-cfDNA% of 2.80 ± 1.77 and 0.30 ± 0.35, respectively. This study found that the selected SNP assays exhibit a high proficiency in identifying donor DNA. This study also supports the use of dd-cfDNA as a routine diagnostic test for kidney transplant recipients, along with biopsies and serum creatinine, to attain better graft monitoring

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    Data-driven precision determination of the material budget in ALICE

    No full text
    International audienceThe knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion

    Study of the p-p-K+^+ and p-p-K^- dynamics using the femtoscopy technique

    No full text
    International audienceThe interactions of kaons (K) and antikaons (K\mathrm{\overline{K}}) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and K\mathrm{\overline{K}}NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p-p-K+^+ and p-p-K^- correlations measured in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p-p-K+^+ and p-p-K^- correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states

    Measurements of jet quenching using semi-inclusive hadron+jet distributions in pp and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) charged hadron, in pp and central Pb-Pb collisions at center of mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in pT,chjetp_{\rm T,ch\,jet} and jet resolution parameter RR. Recoil jet yields are reported for R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,chjet<1407 < p_{\rm T,ch\, jet} < 140 GeV/c/c and π/2<Δφ<π\pi/2<\Delta\varphi<\pi, where Δφ\Delta\varphi is the azimuthal angular separation between hadron trigger and recoil jet. The low pT,chjetp_{\rm T,ch\,jet} reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of pT,chjetp_{\rm T,ch\,jet} distributions from pp and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching.The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) charged hadron, in pp and central Pb-Pb collisions at center of mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in pT,chjetp_{\rm T,ch\,jet} and jet resolution parameter RR. Recoil jet yields are reported for R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,chjet<1407 < p_{\rm T,ch\, jet} < 140 GeV/c/c and π/2<Δφ<π\pi/2<\Delta\varphi<\pi, where Δφ\Delta\varphi is the azimuthal angular separation between hadron trigger and recoil jet. The low pT,chjetp_{\rm T,ch\,jet} reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of pT,chjetp_{\rm T,ch\,jet} distributions from pp and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching

    Dielectron production in central Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    International audienceThe first measurement of the e+^+e^- pair production at midrapidity and low invariant mass in central Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV at the LHC is presented. The yield of e+^+e^- pairs is compared with a cocktail of expected hadronic decay contributions in the invariant mass (meem_{\rm ee}) and pair transverse momentum (pT,eep_{\rm T,ee}) ranges mee<3.5m_{\rm ee} < 3.5 GeV/c2/c^2 and pT,ee<8p_{\rm T,ee} < 8 GeV/c/c. For 0.18<mee<0.50.18 < m_{\rm ee} < 0.5 GeV/c2/c^2 the ratio of data to the cocktail of hadronic contributions without ρ\rho mesons amounts to 1.42±0.12 (stat.)±0.17 (syst.)±0.12 (cocktail)1.42 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) \pm 0.12 \ ({\rm cocktail}) and 1.44±0.12 (stat.)±0.17 (syst.)0.21+0.17 (cocktail)1.44 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) ^{+0.17}_{-0.21} \ ({\rm cocktail}), including or not including medium effects in the estimation of the heavy-flavor background, respectively. It is consistent with predictions from two different models for an additional contribution of thermal e+^+e^- pairs from the hadronic and partonic phases. In the intermediate-mass range (1.2<mee<2.61.2 < m_{\rm ee} < 2.6 GeV/c2/c^2), the pair transverse impact parameter of the e+^+e^- pairs (DCAee_{\rm ee}) is used for the first time in Pb-Pb collisions to separate displaced dielectrons from heavy-flavor hadron decays from a possible (thermal) contribution produced at the interaction point. The data are consistent with a suppression of e+^+e^- pairs from cc{\rm c\overline{c}} and an additional prompt component. Finally, the first direct-photon measurement in the 10% most central Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is reported via the study of virtual direct photons in the transverse momentum range 1<pT<51 < p_{\rm T} < 5 GeV/c/c. A model including prompt photons, as well as photons from the pre-equilibrium and fluid-dynamic phases, can reproduce the result, while being at the upper edge of the data uncertainties

    System size dependence of hadronic rescattering effect at LHC energies

    No full text
    International audienceThe first measurements of K(892)0\mathrm{K^{*}(892)^{0}} resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=\sqrt{s_{\mathrm{NN}}}= 5.44 TeV and pp collisions at s=\sqrt{s}= 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (y<0.5|y|< 0.5) using the hadronic decay channel K0K±π\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K0\mathrm{K^{*0}}, and yield ratios of resonance to stable hadron (K0\mathrm{K^{*0}}/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K0\mathrm{K^{*0}} resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K0\mathrm{K^{*0}} in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model
    corecore