22 research outputs found

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° для ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΠ² Ρ€ΡƒΠ΄ Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²

    Get PDF
    In recent years, heavy industry has rapidly increased interest in rare earth metals (REE). At the same time, new tasks on completeness of extraction and quality (purity) of REE are set. Providing new requirements for the quality of rare-earth metals can be achieved by two modern methods of ore processing. The first method is traditional leaching, but with the use of modern ultrasonic reactors of a through passage type of domestic production. The second method is leaching with the use of expensive imported impregnated sorbents that require special disposal after the deposition process of the desired fraction of material. The disadvantage of ultrasonic devices for processing of rare-earth metals is that the assigned parameters of the working chamber (length and diameter) are calculated for a specific type of ore being processed. Therefore, ultrasonic reactors operating in the metallurgical industry cannot be used to process all types of REE ores. The aim of the work is to study the efficiency of processing concentrates of ores containing rare earth elements by leaching using a universal ultrasonic reactor suitable for processing various concentrates containing rare earth elements. In this work, alkaline ore processing is carried out in an ultrasonic reactor of a special design, which allows regulation of the dimensions of the reactor working space this makes it possible to configure the reactor for highly efficient ore processing at different initial concentrations of valuable components. As shown by the results of the experiments, the extraction of rareearth metals and other valuable components of the ore in the ultrasonic reactor of this design is not less than 98.3%.Π’ послСдниС Π³ΠΎΠ΄Ρ‹ Π² тяТСлой ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ возрос интСрСс ΠΊ Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌ (Π Π—Πœ). ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ поставлСны Π½ΠΎΠ²Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎ ΠΏΠΎΠ»Π½ΠΎΡ‚Π΅ извлСчСния ΠΈ качСству (чистотС) самих Π Π—Πœ. ΠžΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ качСству Π Π—Πœ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ достигнуто двумя соврСмСнными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€ΡƒΠ΄Ρ‹. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ способ - Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅, Π½ΠΎ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ соврСмСнных ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΎΡ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° отСчСствСнного производства. Π’Ρ‚ΠΎΡ€ΠΎΠΉ способ - Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΡ€ΠΎΠ³ΠΈΡ… ΠΈΠΌΠΏΠΎΡ€Ρ‚Π½Ρ‹Ρ… ΠΈΠΌΠΏΡ€Π΅Π³Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сорбСнтов, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΡ… ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ послС провСдСния процСсса осаТдСния Π½ΡƒΠΆΠ½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. НСдостатком ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π Π—Πœ Ρ€ΡƒΠ΄ являСтся Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ (Π΄Π»ΠΈΠ½Π° ΠΈ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€) Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ€ΡƒΠ΄Ρ‹, поэтому Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² мСталлургичСской ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Ρ‹ нСльзя ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ всСх Π²ΠΈΠ΄ΠΎΠ² Ρ€ΡƒΠ΄ Π Π—Πœ. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ эффСктивности ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΠ² Ρ€ΡƒΠ΄, содСрТащих Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Π΅ элСмСнты, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ выщСлачивания с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½ΠΎΠ³ΠΎ для ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΠ², содСрТащих Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Π΅ элСмСнты. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ щСлочная ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€ΡƒΠ΄Ρ‹ осущСствляСтся Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π΅ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ конструкции, Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‰Π΅ΠΉ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ пространства Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. Π­Ρ‚ΠΎ позволяСт ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ настройку Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° Π½Π° Π²Ρ‹ΡΠΎΠΊΠΎΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Ρ€ΡƒΠ΄Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ исходной ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². Как ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… экспСримСнтов, ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π Π—Πœ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ€ΡƒΠ΄Ρ‹ Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π΅ Ρ‚Π°ΠΊΠΎΠΉ конструкции составляСт Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 98,3 %

    ВысокотСмпСратурный ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ ΠΈ Π΅Π³ΠΎ особСнности

    Get PDF
    Research on kinetics of change of phosphorus, niobium, vanadium and titanium content during high-temperature roasting of ore from Tomtor field mixed with active additives: bicarbonate (NaHCO3), sodium carbonate (Na2CO3), alkalis (КОН, NaOH) is conducted. An equation of ore roasting kinetics is proposed and values of constant rate of high-temperature ore roasting for phosphorus, niobium, vanadium and the titanium under various conditions are calculated. Relationships of constant rate of high-temperature ore roasting in the atmosphere of air oxygen, argon and molecular chlorine to the temperature of roasting and content of active additives are obtained. It is established that in the atmosphere of air oxygen, ore roasting is most effective with additions of NaHCO3, Na2CO3, NaOH, taken with the ratio (1:1). It is shown that roasting of ore in admixture with carbonates and alkalis can translate into a solution for subsequent leaching at minimum 95.0% of phosphorus and 44.0% of vanadium contained in the original ore. It is established that the greatest rate of roasting in the atmosphere of oxygen is characterized by ore roasting in a mixture of NaHCO3 and NaOH. The constant rates of that process for phosphorus and vanadium are calculated. It is established that filter cake forming after ore roasting requires further processing because it contains high concentrations of vanadium and other valuable metals.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ измСнСния содСрТания фосфора, ниобия, ванадия ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° ΠΏΡ€ΠΈ высокотСмпСратурном ΠΎΠ±ΠΆΠΈΠ³Π΅ Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Π² смСси с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ: Π±ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠΌ (NaHCO3), ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠΌ натрия (Na2CO3), Ρ‰Π΅Π»ΠΎΡ‡Π°ΠΌΠΈ (КОН, NaOH). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ ΠΈ рассчитаны значСния постоянной скорости высокотСмпСратурного ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ для фосфора, ниобия, ванадия ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ зависимости постоянной скорости высокотСмпСратурного ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π°, Π°Ρ€Π³ΠΎΠ½Π° ΠΈ молСкулярного Ρ…Π»ΠΎΡ€Π° ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ±ΠΆΠΈΠ³Π° ΠΈ содСрТания Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ. УстановлСно, Ρ‡Ρ‚ΠΎ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивно с Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ NaHCO3, Na2CO3, NaOH, взятыми Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ (1:1). Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ Π² смСси с ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π°ΠΌΠΈ ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π°ΠΌΠΈ позволяСт ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π² раствор ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 95,0% фосфора ΠΈ 44,0% ванадия, содСрТащихся Π² исходной Ρ€ΡƒΠ΄Π΅. УстановлСно, Ρ‡Ρ‚ΠΎ наибольшСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π° характСризуСтся ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ Π² смСси с NaHCO3 ΠΈ NaOH. Рассчитаны постоянныС скорости этого процСсса для фосфора ΠΈ ванадия. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉΡΡ послС ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ ΠΊΠ΅ΠΊ, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ содСрТит высокиС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ванадия ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²

    Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• Π“Π ΠΠΠ£Π›ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠžΠ“Πž И Π₯ИМИКО-ΠœΠ˜ΠΠ•Π ΠΠ›Π¬ΠΠžΠ“Πž Π‘ΠžΠ‘Π’ΠΠ’ΠžΠ’ Π Π£Π”Π« ΠœΠ•Π‘Π’ΠžΠ ΠžΠ–Π”Π•ΠΠ˜Π― ВОМВОР

    Get PDF
    A study of the particle size distribution, mineral and chemical composition of the complex scandium-rare-earth-niobium Tomtor ore deposit has been conducted. It is shown that the basis of the ore is comprised of phosphates, carbonates and niobates. The main identified minerals are the minerals of crandallite group (gorceixite, goyazite and florencite), pyrochlore and monazite, in addition, clearly identified boehmite, apatite, and quartz. A group of other minerals includes siderite, kaolinite, rutile and some other minerals. It is established that the investigated ore belongs to a mineral variety of the pyrochlore-monazite-crandallite ores of phosphate-rare-metal type with a predominance of crandallite minerals (50%) and relatively low content of pyrochlore (~7%) in its composition. Based on the content of niobium oxide Nb2O5 (~4%) in a sample, the ore can be attributed to the second class according to the accepted classification, i.e. the rich niobium ores, containing from 3,5 to 9% Nb2O5. Tomtor ore deposit is also rich in the mineral content of rare earth elements. On the basis of the conducted research the conclusion about practical impossibility of beneficiation of β€œTomtor” ore deposits by traditional methods and economic feasibility of ore processing by the combined pyro - and hydrometallurgy methods is made.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования грануломСтричСского, ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ химичСского состава Ρ€ΡƒΠ΄Ρ‹ комплСксного скандий-Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½ΠΎ-Π½ΠΈΠΎΠ±ΠΈΠ΅Π²ΠΎΠ³ΠΎ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€. Показано, Ρ‡Ρ‚ΠΎ основу Ρ€ΡƒΠ΄Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ фосфаты, Π½ΠΈΠΎΠ±Π°Ρ‚Ρ‹ ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Ρ‹. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Ρ‹ ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚ΠΎΠ²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ (горсСйскит, гояцит ΠΈ флорСнсит), ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€ ΠΈ ΠΌΠΎΠ½Π°Ρ†ΠΈΡ‚, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Π΅Ρ‚ΠΊΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π±Π΅ΠΌΠΈΡ‚, Π°ΠΏΠ°Ρ‚ΠΈΡ‚ ΠΈ ΠΊΠ²Π°Ρ€Ρ†. Π’ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² входят сидСрит, ΠΊΠ°ΠΎΠ»ΠΈΠ½ΠΈΡ‚, Ρ€ΡƒΡ‚ΠΈΠ» ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ исслСдуСмая Ρ€ΡƒΠ΄Π° относится ΠΊ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ разновидности ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€-ΠΌΠΎΠ½Π°Ρ†ΠΈΡ‚-ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ фосфатно-Ρ€Π΅Π΄ΠΊΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° с ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ Π² Π΅Π΅ составС ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚Π° (Π±ΠΎΠ»Π΅Π΅ 50%) ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСвысоким содСрТаниСм ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€Π° (~7%). По ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² ΠΏΡ€ΠΎΠ±Π΅ оксида ниобия Nb2O5 (~4%) Ρ€ΡƒΠ΄Π° ΠΏΠΎ принятой классификации ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ отнСсСна ΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ сорту, Ρ‚.Π΅. ΠΊ Π±ΠΎΠ³Π°Ρ‚Ρ‹ΠΌ Π½ΠΈΠΎΠ±ΠΈΠ΅Π²Ρ‹ΠΌ Ρ€ΡƒΠ΄Π°ΠΌ, содСрТащим ΠΎΡ‚ 3,5 Π΄ΠΎ 9% Nb2O5. Π ΡƒΠ΄Π° мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Ρ‚Π°ΠΊΠΆΠ΅ Π±ΠΎΠ³Π°Ρ‚Π° ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов. На основании ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ практичСской нСвозмоТности обогащСния Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ экономичСской оправданности ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€ΡƒΠ΄Ρ‹ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΈΡ€ΠΎΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΡƒΡ€Π³ΠΈΠΈ

    БвСрхвысокомолСкулярный полиэтилСн (Π‘Π’ΠœΠŸΠ­) ΠΊΠ°ΠΊ основа ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса для создания 3D ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹

    Get PDF
    The study is devoted to the development of an artificial material based on the ultrahigh-molecular weight polyethylene (UHMWPE) with a porous or cellular 3D structure as a cellular matrix – a framework for growing cell cultures. The development of such matrix provides support for neuronal cell culture under conditions that mimick those that exist in the living body. Typically, in vitro cellular studies are conducted in a 2D format, which limits intercellular interactions, morphology, differentiation, survival, signaling responses, gene expression and proliferation that are found in vivo. Here, we propose to use UHMWPE as a material of the cellular matrix, the ultra-high molecular weight polyethylene. UHMWP is a bioinert substance, wich allows forming a system of open connected pores needed to provide cellular life conditions with supply of nutrients and oxygen as well as the removal of waste products, the possibility of intercellular communication, etc. As a result, the use of UHMWPE as a cellular matrix will allow to study the processes occurring in cells in the 3D environment.Π Π°Π±ΠΎΡ‚Π° посвящСна Π°Π½Π°Π»ΠΈΠ·Ρƒ свойств искусствСнного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° основС свСрхвысокомолСкулярного полиэтилСна (Π‘Π’ΠœΠŸΠ­) с пористой ΠΈΠ»ΠΈ ячСистой 3D-структурой, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² качСствС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса – каркаса для выращивания ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ‚Π°ΠΊΠΎΠ³ΠΎ каркаса обСспСчиваСт ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Π² условиях, ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΊ Ρ‚Π΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΠΆΠΈΠ²ΠΎΠΌ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ исслСдования in vitro проводят Π² 2D-Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎ своСй ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ взаимодСйствия, ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ, Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ, ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Π΅ in vivo. Π’ качСствС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса прСдлагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΠΈΠΎΠΈΠ½Π΅Ρ€Ρ‚Π½Ρ‹ΠΉ свСрхвысокомолСкулярный полиэтилСн (Π‘Π’ΠœΠŸΠ­), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ систСму ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… связанных ΠΏΠΎΡ€ с Ρ†Π΅Π»ΡŒΡŽ обСспСчСния ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ – β€œΠΏΠΎΠ΄Π²ΠΎΠ΄β€ питания ΠΈ кислорода, ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ осущСствлСния ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… связСй ΠΈ Ρ‚.Π΄. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ использованиС Π‘Π’ΠœΠŸΠ­ Π² качСствС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ процСссы, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π² условиях 3D-срСды

    Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• Π“Π ΠΠΠ£Π›ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠžΠ“Πž И Π₯ИМИКО-ΠœΠ˜ΠΠ•Π ΠΠ›Π¬ΠΠžΠ“Πž Π‘ΠžΠ‘Π’ΠΠ’ΠžΠ’ Π Π£Π”Π« ΠœΠ•Π‘Π’ΠžΠ ΠžΠ–Π”Π•ΠΠ˜Π― ВОМВОР

    No full text
    A study of the particle size distribution, mineral and chemical composition of the complex scandium-rare-earth-niobium Tomtor ore deposit has been conducted. It is shown that the basis of the ore is comprised of phosphates, carbonates and niobates. The main identified minerals are the minerals of crandallite group (gorceixite, goyazite and florencite), pyrochlore and monazite, in addition, clearly identified boehmite, apatite, and quartz. A group of other minerals includes siderite, kaolinite, rutile and some other minerals. It is established that the investigated ore belongs to a mineral variety of the pyrochlore-monazite-crandallite ores of phosphate-rare-metal type with a predominance of crandallite minerals (50%) and relatively low content of pyrochlore (~7%) in its composition. Based on the content of niobium oxide Nb2O5 (~4%) in a sample, the ore can be attributed to the second class according to the accepted classification, i.e. the rich niobium ores, containing from 3,5 to 9% Nb2O5. Tomtor ore deposit is also rich in the mineral content of rare earth elements. On the basis of the conducted research the conclusion about practical impossibility of beneficiation of β€œTomtor” ore deposits by traditional methods and economic feasibility of ore processing by the combined pyro - and hydrometallurgy methods is made.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования грануломСтричСского, ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ химичСского состава Ρ€ΡƒΠ΄Ρ‹ комплСксного скандий-Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½ΠΎ-Π½ΠΈΠΎΠ±ΠΈΠ΅Π²ΠΎΠ³ΠΎ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€. Показано, Ρ‡Ρ‚ΠΎ основу Ρ€ΡƒΠ΄Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ фосфаты, Π½ΠΈΠΎΠ±Π°Ρ‚Ρ‹ ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Ρ‹. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Ρ‹ ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚ΠΎΠ²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ (горсСйскит, гояцит ΠΈ флорСнсит), ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€ ΠΈ ΠΌΠΎΠ½Π°Ρ†ΠΈΡ‚, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Π΅Ρ‚ΠΊΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π±Π΅ΠΌΠΈΡ‚, Π°ΠΏΠ°Ρ‚ΠΈΡ‚ ΠΈ ΠΊΠ²Π°Ρ€Ρ†. Π’ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² входят сидСрит, ΠΊΠ°ΠΎΠ»ΠΈΠ½ΠΈΡ‚, Ρ€ΡƒΡ‚ΠΈΠ» ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ исслСдуСмая Ρ€ΡƒΠ΄Π° относится ΠΊ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ разновидности ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€-ΠΌΠΎΠ½Π°Ρ†ΠΈΡ‚-ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ фосфатно-Ρ€Π΅Π΄ΠΊΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° с ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ Π² Π΅Π΅ составС ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΊΡ€Π°Π½Π΄Π°Π»Π»ΠΈΡ‚Π° (Π±ΠΎΠ»Π΅Π΅ 50%) ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСвысоким содСрТаниСм ΠΏΠΈΡ€ΠΎΡ…Π»ΠΎΡ€Π° (~7%). По ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² ΠΏΡ€ΠΎΠ±Π΅ оксида ниобия Nb2O5 (~4%) Ρ€ΡƒΠ΄Π° ΠΏΠΎ принятой классификации ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ отнСсСна ΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ сорту, Ρ‚.Π΅. ΠΊ Π±ΠΎΠ³Π°Ρ‚Ρ‹ΠΌ Π½ΠΈΠΎΠ±ΠΈΠ΅Π²Ρ‹ΠΌ Ρ€ΡƒΠ΄Π°ΠΌ, содСрТащим ΠΎΡ‚ 3,5 Π΄ΠΎ 9% Nb2O5. Π ΡƒΠ΄Π° мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Ρ‚Π°ΠΊΠΆΠ΅ Π±ΠΎΠ³Π°Ρ‚Π° ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов. На основании ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ практичСской нСвозмоТности обогащСния Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ экономичСской оправданности ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€ΡƒΠ΄Ρ‹ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΈΡ€ΠΎΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΡƒΡ€Π³ΠΈΠΈ

    ВысокотСмпСратурный ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ ΠΈ Π΅Π³ΠΎ особСнности

    No full text
    Research on kinetics of change of phosphorus, niobium, vanadium and titanium content during high-temperature roasting of ore from Tomtor field mixed with active additives: bicarbonate (NaHCO3), sodium carbonate (Na2CO3), alkalis (КОН, NaOH) is conducted. An equation of ore roasting kinetics is proposed and values of constant rate of high-temperature ore roasting for phosphorus, niobium, vanadium and the titanium under various conditions are calculated. Relationships of constant rate of high-temperature ore roasting in the atmosphere of air oxygen, argon and molecular chlorine to the temperature of roasting and content of active additives are obtained. It is established that in the atmosphere of air oxygen, ore roasting is most effective with additions of NaHCO3, Na2CO3, NaOH, taken with the ratio (1:1). It is shown that roasting of ore in admixture with carbonates and alkalis can translate into a solution for subsequent leaching at minimum 95.0% of phosphorus and 44.0% of vanadium contained in the original ore. It is established that the greatest rate of roasting in the atmosphere of oxygen is characterized by ore roasting in a mixture of NaHCO3 and NaOH. The constant rates of that process for phosphorus and vanadium are calculated. It is established that filter cake forming after ore roasting requires further processing because it contains high concentrations of vanadium and other valuable metals.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ измСнСния содСрТания фосфора, ниобия, ванадия ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° ΠΏΡ€ΠΈ высокотСмпСратурном ΠΎΠ±ΠΆΠΈΠ³Π΅ Ρ€ΡƒΠ΄Ρ‹ мСстороТдСния Π’ΠΎΠΌΡ‚ΠΎΡ€ Π² смСси с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ: Π±ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠΌ (NaHCO3), ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠΌ натрия (Na2CO3), Ρ‰Π΅Π»ΠΎΡ‡Π°ΠΌΠΈ (КОН, NaOH). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ ΠΈ рассчитаны значСния постоянной скорости высокотСмпСратурного ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ для фосфора, ниобия, ванадия ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ зависимости постоянной скорости высокотСмпСратурного ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π°, Π°Ρ€Π³ΠΎΠ½Π° ΠΈ молСкулярного Ρ…Π»ΠΎΡ€Π° ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ±ΠΆΠΈΠ³Π° ΠΈ содСрТания Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ. УстановлСно, Ρ‡Ρ‚ΠΎ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивно с Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ NaHCO3, Na2CO3, NaOH, взятыми Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ (1:1). Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ Π² смСси с ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π°ΠΌΠΈ ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π°ΠΌΠΈ позволяСт ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π² раствор ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 95,0% фосфора ΠΈ 44,0% ванадия, содСрТащихся Π² исходной Ρ€ΡƒΠ΄Π΅. УстановлСно, Ρ‡Ρ‚ΠΎ наибольшСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π² атмосфСрС кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π° характСризуСтся ΠΎΠ±ΠΆΠΈΠ³ Ρ€ΡƒΠ΄Ρ‹ Π² смСси с NaHCO3 ΠΈ NaOH. Рассчитаны постоянныС скорости этого процСсса для фосфора ΠΈ ванадия. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉΡΡ послС ΠΎΠ±ΠΆΠΈΠ³Π° Ρ€ΡƒΠ΄Ρ‹ ΠΊΠ΅ΠΊ, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ содСрТит высокиС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ванадия ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²

    Production of nanostructured shape memory alloy for the aerospace industry by rolling method

    No full text
    A technology has been developed for obtaining high-strength nanostructured titanium nickelide by intensive plastic deformation in rolling mills. An alternative to powder metallurgy is proposed a technological solution for obtaining a material with a nanostructure, bypassing the stage of directly obtaining powders and their compacting. Experimental data are obtained and theoretical conclusions are drawn about the relationship between the evolution of the defect structure and the nature of the change in the mechanical properties of titanium nickelide under the influence of intense plastic deformations. The offered technology is realized on the usual industrial equipment without use of special expensive installations. Β© 2021, Univelt Inc. All rights reserved

    Shape optimization of nickel anodes used in the production of galvanic coatings of rocket engine

    No full text
    Production of electroplates of rocket engines traditionally uses hot-rolled sheet nickel anodes, the main disadvantages of which are: small specific surface, high volume of anode scrap formation. The purpose of the study is to investigate and develop the process of cathode electroforming of spherical deposits and their subsequent usage as soluble nickel anodes. A laboratory setup and cathode mount of original design was developed for the generation of spherical deposits. Cathode deposits of spherical shape with 0.9-1.2 cm diameter and fine profile and surface quality were obtained as a result of the experiment. Utilizing spherical anodes in nickel electroplate coating production showed that this process is accompanied by 98-99% dissolution of loaded anode mass with the reduction of specific cost almost by 25%. Β© 2020, Univelt Inc. All rights reserved

    Production nickel composite materials reinforced with ultrafine powders, obtained from aerospace industry waste

    No full text
    First developed and studied composite materials on a metal substrate (matrix) obtained by the electrodeposition of aerospace industry nickel waste of the elec-trolytes-suspensions based sulfate, chloride, acetate and methanesulfonateon containing ultrafine powders kaolin and bentonite clays. It was established that by using ultrafine powders on electrolyte suspensions, metal matrix composites (MMCs) reinforced by ultrafine uniform-sized elements are produced. New MMCs from electrolyte suspensions with addition of nanosize powders of kaolin and bentonite were obtained as a result of the conducted experiments and had been thoroughly studied. The effect of kaolin and bentonite nanosize powder additive concentration on substrate porosity and its electrochemical properties (corrosion resistance, electrochemical activity) had been established. It was shown that porosity, corrosion resistance and electrochemical activity of MMC are determined by the grain size of ultrafine elements and their concentration in the electrolyte suspension. Consumption of organic additives for the electrolytes that provide the required surface quality of MMC was determined and optimized. Β© 2020, Univelt Inc. All rights reserved
    corecore