19 research outputs found

    The impact of celestial pole offset modelling on VLBI UT1 Intensive results

    Full text link
    Very Long Baseline Interferometry (VLBI) Intensive sessions are scheduled to provide operational Universal Time (UT1) determinations with low latency. UT1 estimates obtained from these observations heavily depend on the model of the celestial pole motion used during data processing. However, even the most accurate precession-nutation model, IAU 2000/2006, is not accurate enough to realize the full potential of VLBI observations. To achieve the highest possible accuracy in UT1 estimates, a celestial pole offset (CPO), which is the difference between the actual and modelled precession-nutation angles, should be applied. Three CPO models are currently available for users. In this paper, these models have been tested and the differences between UT1 estimates obtained with those models are investigated. It has been shown that neglecting CPO modelling during VLBI UT1 Intensive processing causes systematic errors in UT1 series of up to 20 microarcseconds. It has been also found that using different CPO models causes the differences in UT1 estimates reaching 10 microarcseconds. Obtained results are applicable to the satellite data processing as well.Comment: 8 pp., accepted for publication in Journal of Geodes

    Report of the IAU/IAG Joint Working Group on Theory of Earth Rotation and Validation

    Get PDF
    This report focuses on some selected scientific outcomes of the activities developed by the IAU/IAG Joint Working Group on Theory of Earth rotation and validation along the term 2015–2019. It is based on its end-of-term report to the IAG Commission 3 published in the Travaux de l’IAG 2015–2019, which in its turn updates previous reports to the IAG and IAU, particularly the triennial report 2015–2018 to the IAU Commission A2, and the medium term report to the IAG Commission 3 (2015–2017). The content of the report has served as a basis for the IAG General Assembly to adopt Resolution 5 on Improvement of Earth rotation theories and models.JMF, AE, and JG were partially supported by Spanish Project AYA2016-79775-P (AEI/FEDER, UE). The work of RSG described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support for that work was provided by the Earth Surface and Interior Focus Area of NASA’s Science Mission Directorate

    Phase 1 Trial of AMA1-C1/Alhydrogel plus CPG 7909: An Asexual Blood-Stage Vaccine for Plasmodium falciparum Malaria

    Get PDF
    Apical Membrane Antigen 1 (AMA1), a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909.A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15), 80 microg of AMA1-C1/Alhydrogel (n = 30), or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30).Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG) were detected by enzyme-linked immunosorbent assay (ELISA), and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition.The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing.ClinicalTrials.gov NCT00344539

    The p53 pathway in breast cancer

    Get PDF
    p53 mutation remains the most common genetic change identified in human neoplasia. In breast cancer, p53 mutation is associated with more aggressive disease and worse overall survival. The frequency of mutation in p53 is, however, lower in breast cancer than in other solid tumours. Changes, both genetic and epigenetic, have been identified in regulators of p53 activity and in some downstream transcriptional targets of p53 in breast cancers that express wild-type p53. Molecular pathological analysis of the structure and expression of constituents of the p53 pathway is likely to have value in diagnosis, in prognostic assessment and, ultimately, in treatment of breast cancer

    Platform for Plasmodium vivax vaccine discovery and development

    Full text link
    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development
    corecore