22 research outputs found

    TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals

    Get PDF
    The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 Ă· 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≄ 0.3, no superconductivity was detected down to 4 K

    Ga substitution as an effective variation of Mn-Tb coupling in multiferroic TbMnO3

    Full text link
    Ga for Mn substitution in multiferroic TbMnO3_{3} has been performed in order to study the influence of Mn-magnetic ordering on the Tb-magnetic sublattice. Complete characterization of TbMn1−x_{1-x}Gax_xO3_{3} (xx = 0, 0.04, 0.1) samples, including magnetization, impedance spectroscopy, and x-ray resonant scattering and neutron diffraction on powder and single crystals has been carried out. We found that keeping the same crystal structure for all compositions, Ga for Mn substitution leads to the linear decrease of TNMnT_{\rm N}^{\rm Mn} and τMn\tau^{\rm Mn}, reflecting the reduction of the exchange interactions strength JMn−MnJ_{\rm Mn-Mn} and the change of the Mn-O-Mn bond angles. At the same time, a strong suppression of both the induced and the separate Tb-magnetic ordering has been observed. This behavior unambiguously prove that the exchange fields JMn−TbJ_{\rm Mn-Tb} have a strong influence on the Tb-magnetic ordering in the full temperature range below TNMnT_{\rm N}^{\rm Mn} and actually stabilize the Tb-magnetic ground state.Comment: 9 pages, 8 figure

    Type II Bi 1- x W x O 1.5 + 1.5 x : a (3 + 3)-dimensional commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide

    Get PDF
    The Type II phase in the Bi1 xWxO1.5 + 1.5x system is shown to have a (3 + 3)- dimensional modulated -Bi2O3-related structure, in which the modulation vector " ‘locks in’ to a commensurate value of 1/3. The structure was refined in a 3 3 3 supercell against single-crystal Laue neutron diffraction data. Ab initio calculations were used to test and optimize the local structure of the oxygen sublattice around a single mixed Bi/W site. The underlying crystal chemistry was shown to be essentially the same as for the recently refined (3 + 3)-dimensional modulated structure of Type II Bi1 xNbxO1.5 + x (Ling et al., 2013), based on a transition from fluorite-type to pyrochlore-type via the appearance of W4O18 ‘tetrahedra of octahedra’ and chains of corner-sharing WO6 octahedra along h110iF directions. The full range of occupancies on this mixed Bi/W site give a hypothetical solid-solution range bounded by Bi23W4O46.5 (x = 0.148) and Bi22W5O48 (x = 0.185), consistent with previous reports and with our own synthetic and analytical results

    Solitonic lattice and Yukawa forces in the rare earth orthoferrite TbFeO3

    Get PDF
    The control of domains in ferroic devices lies at the heart of their potential for technological applications. Multiferroic materials offer another level of complexity as domains can be either or both of a ferroelectric and magnetic nature. Here we report the discovery of a novel magnetic state in the orthoferrite TbFeO3 using neutron diffraction under an applied magnetic field. This state has a very long incommensurate period ranging from 340 Angstrom at 3K to 2700 Angstrom at the lowest temperatures and exhibits an anomalously large number of higher-order harmonics, allowing us to identify it with the periodic array of sharp domain walls of Tb spins separated by many lattice constants. The Tb domain walls interact by exchanging spin waves propagating through the Fe magnetic sublattice. The resulting Yukawa-like force, familiar from particle physics, has a finite range that determines the period of the incommensurate state.Comment: 11 pages 14 figure

    Rich Magnetic Phase Diagram of Putative Helimagnet Sr3_3Fe2_2O7_7

    Full text link
    The cubic perovskite SrFeO3_3 was recently reported to host hedgehog- and skyrmion-lattice phases in a highly symmetric crystal structure which does not support the Dzyaloshinskii-Moriya interactions commonly invoked to explain such magnetic order. Hints of a complex magnetic phase diagram have also recently been found in powder samples of the single-layer Ruddlesden-Popper analog Sr2_2FeO4_4, so a reinvestigation of the bilayer material Sr3_3Fe2_2O7_7, believed to be a simple helimagnet, is called for. Our magnetization and dilatometry studies reveal a rich magnetic phase diagram with at least 6 distinct magnetically ordered phases and strong similarities to that of SrFeO3_3. In particular, at least one phase is apparently multiple-q\mathbf{q}, and the q\mathbf{q}s are not observed to vary among the phases. Since Sr3_3Fe2_2O7_7 has only two possible orientations for its propagation vector, some of the phases are likely exotic multiple-q\mathbf{q} order, and it is possible to fully detwin all phases and more readily access their exotic physics.Comment: 14 pages, 13 figure

    Hidden Charge Order in an Iron Oxide Square-Lattice Compound

    Get PDF
    Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on “hidden order” in other materials
    corecore