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I. SYMMETRY ANALYSIS

We use the so-called Bertaut’s notations'® to describe the symmetry of magnetic states
of TbFeOj (see Table I). The ordering of Fe spins in the HT phase is described by the I'y
representation. In the I'T state both Fe and Tb spin orders have I's symmetry, while in the
LT phase the Fe order changes back to I'y, while the ordering of Tb spins has I's symmetry

(see Fig. 1). Furthermore, the Lifshitz invariant has the form
I'so,I'y —I'20,'s, (1)
from which Eq.(4) follows. We note that the rotationally symmetric scalar products,
A9 F-F-9A" and G'-9,C—-C-09,G (2)

where e.g. A"-0,F = A -0,F, + A; -0y F, + Al - 0,F,, are also invariant under all transfor-

mations of the Pbnm group showing that the coupling between inhomogeneous rare earth

and transition metal magnetic orders can originate from Heisenberg exchange interactions®.

Fe Th |mg|my|m,

Do F.CyGL | FyCyl + | — | —

3| CoFyA. | CLF| — | + | -

Ta|GoA,F| FL | —| = |+
rs GLa| - |- |-
L's A, | =+ |+
I'z G, |+ |—|+
T A+ |+ | -

TABLE I: Transformation properties of representations of Pbnm space group under the three
generators of the group: the two glide mirrors, m, : (z,y,2) — (1/2 —2,1/2 + y,2) and m, :

(x,y,2) = (1/24+2,1/2 —y,1/2 + z), and the mirror m, : (z,y,2) — (z,y,1/2 — z).
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II. MEASUREMENTS OF THE (011) G-TYPE REFLECTION

Although the magnetic environment in our diffraction experiment constrains the portions
of reciprocal space that we can access, we were able to also probe a limited region around
the G-type reflection (0,1,1). In a field H||c= 2T we observe incomensurate reflections below
3.5K with the same incommensurability ¢ and temperature dependence as for the satellites
around the A-type (0,0,1) reflection (see Fig. S1 in the supplementary information). The
commensurate (0,1,1) G-type reflection observed above 3.5 K arises only from the Fe-spin
ordering (see Fig. 1). The fact that the intensity of the commensurate reflection does not
vary through this transition suggests that the Fe order is not significantly perturbed, in

agreement with our theory.

IIT. DIELECTRIC MEASUREMENTS

Measurements of the capacitance and loss were performed both as a function of temper-
ature between 0.3 and 15 K in field cooled mode and isothermally as a function of magnetic
field up to 1.9 T, in zero field cooled mode. In our measurements, a calibrated Cernox
resistance thermometer (CX-1030) on the sample holder was used to monitor the sample
temperature, which was measured with an LakeShore 370 AC Resistance Bridge. The resolu-
tion of the temperature measurement is 5-10~%, although the temperature stability decreases
around 3 K, due to the boiling temperature of liquid *He of 3.2 K. The capacitance and loss
measurements were performed at a frequency of 1000 Hz and an excitation of 15 V. The

resolution of the capacitance measurement is 2 - 107°.
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Fig. S1: a, Temperature dependence as a function of temperature of the A-type (0,0,1) reflection
and the 1st harmonic reflection of the IC phase, determined from the neutron diffraction data in a
magnetic field of 2 T applied along the c—axis. b, Single crystal neutron diffraction data measured
on cooling and in a magnetic field parallel to the c-axis of H|[c=2 T. Scans are measured in reciprocal
space along (0,k,1) around the G-type reflection (0,1,1). As above the temperature dependent
neutron diffraction measurements are represented in a two-dimensional plot with intensity depicted
as colour on a log scale shown on the right of the panel. The 1st and 3rd harmonic reflections are

evident below 3.4 K.
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Fig. S2: Example data of capacitance and loss measured from a single crystal of TbFeO3 between
0 and 2 T as a function of temperature between 4 and 15 K, with data collected both on cooling
(dashed line) and on warming (continuous line). In the data shown, no significant hysteresis is
observed. Here the sample was cooled with an applied magnetic field and measurements were
taken continuously during warmup with a sweep rate of 125 mK per minute while the field was
maintained. Similar procedures where followed for these capacitance and loss measurements. We
found that measurement on cooling showed exactly the same behaviour. We also noted that that

measurements after field cooling and zero field cooling do not differ in this temperature range.
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Fig. S3: Example data of capacitance and loss measured from a single crystal of TbFeO3 between
0 and 2 T as a function of temperature between 2 and 4 K, with data collected both on cooling
(dashed line) and on warming (continuous line). Here the sample was cooled with an applied
magnetic field while measurements were taken continuously during warming with a sweep rate of
30 mK per minute. Measurements were also performed down to 0.3 K, but no anomalies were

found indicating the absence of further transitions.
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Fig. S4: Example data of capacitance and loss measured from a single crystal of ThFeO3 as a
function of magnetic field between 5 and 10 K and up to 1.5 T. The sweep rate of the magnetic field

used here was 50 mT per minute. Measurements were taken isothermally after zero field cooling.
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Fig. S5: Example data of the capacitance and loss measured at 0.5 and 2.5 K up to 1.5 T. A clear
peak is observed for data measured after zero field cooling at 0.5 T, consistent with the transition
from the LT phase to the LT’ phase observed using neutron diffraction. The same peak is not
observed when the field was ramped down from 1.5 T and neither is it found if we ramp the field
up again. This behaviour was consistent for a series of measurements between 0.3 to 2.5 K and
suggests that over this temperature range the LT’ phase once entered into with field, is stable down

to zero field. The sweep rate of the magnetic field for these measurements was 50 mT per minute.
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