18 research outputs found

    Monopolar and dipolar relaxation in spin ice Ho2_2Ti2_2O7_7

    Get PDF
    When degenerate states are separated by large energy barriers, the approach to thermal equilibrium can be slow enough that physical properties are defined by the thermalization process rather than the equilibrium. The exploration of thermalization pushes experimental boundaries and provides refreshing insights into atomic scale correlations and processes that impact steady state dynamics and prospects for realizing solid state quantum entanglement. We present a comprehensive study of magnetic relaxation in Ho2_2Ti2_2O7_7 based on frequency-dependent susceptibility measurements and neutron diffraction studies of the real-time atomic-scale response to field quenches. Covering nearly ten decades in time scales, these experiments uncover two distinct relaxation processes that dominate in different temperature regimes. At low temperatures (0.6K<T<1K) magnetic relaxation is associated with monopole motion along the applied field direction through the spin-ice vacuum. The increase of the relaxation time upon cooling indicates reduced monopole conductivity driven by decreasing monopole concentration and mobility as in a semiconductor. At higher temperatures (1K<T<2K) magnetic relaxation is associated with the reorientation of monopolar bound states as the system approaches the single-spin tunneling regime. Spin fractionalization is thus directly exposed in the relaxation dynamics

    Multilayer formation in an azacrown [18]N6 Langmuir film

    Get PDF
    A neutron reflectivity study of a deuterated azacrown [18]N6 at the air-water interface shows that it forms multilayers upon compression, with monolayers and trilayers being more stable than bilayers.Peer reviewedChemistr
    corecore