6 research outputs found

    Quantifizierung struktureller und funktioneller Aspekte des Adsorptionsprozesses

    Get PDF
    Der Fokus dieser Arbeit lag auf der Untersuchung der Wechselwirkung von Proteinen mit Nanopartikel-OberflĂ€chen. Das Ziel bestand in grundlegenden qualitativen und quantitativen Untersuchungen des Adsorptionsprozesses und den damit verbundenen strukturellen und funktionellen Änderungen von Proteinen. Basierend auf der Circulardichroismus (CD)-Spektroskopie wurde eine neue Meßmethode entwickelt und validiert, mit der sich erfolgreich leichgewichtskonstanten (KD) fĂŒr den Adsorptions-/Desorptionsprozess von Proteinen auf Nanopartikel-OberflĂ€chen bestimmen lassen. Es konnte gezeigt werden, dass verschiedene Proteine eine unterschiedliche AffinitĂ€t zur Nanopartikel-OberflĂ€che besitzen. Die Proteine Serum-Albumin (BSA) und Insulin zeigen eine starke AffinitĂ€t zu Silber-Nanopartikel-OberflĂ€chen. Dieses Ă€ußert sich in einer Gleichgewichtskonstante (KD) im kleinen nanomolaren Bereich. FĂŒr die Proteine Lysozym und Immunoglobulin (IgG) wurden höhere KD-Werte ermittelt. Es stellte sich heraus, dass die OberflĂ€chenladung einen entscheidenden Faktor im Adsorptionsverhalten von Proteinen darstellt. Bei metallischen Gold- und Silber-Nanopartikeln konnte kein Unterschied im Adsorptionsverhalten von BSA festgestellt werden. Dieses konnte verĂ€ndert werden, wenn Nanopartikel Polymer-funktionalisiert wurden. FĂŒr die Untersuchung des Einflusses einer Polymerfunktionalisierung wurden im Rahmen einer Kooperation Gold- und Silber-Nanopartikel mit dem Polymer (Poly)vinylpyrrolidon (PVP) funktionalisiert. Untersuchungen von BSA mit Citrat-stabilisierten metallischen Nanopartikeln zeigen KD-Werte im kleinen nanomolaren Bereich, wĂ€hrend fĂŒr Polymere und Polymer-funktionalisierte Nanopartikel Gleichgewichtskonstanten im kleinen mikromolaren Bereich bestimmt wurden. In dieser Arbeit wurde erstmalig die AbhĂ€ngigkeit der Nanopartikel-GrĂ¶ĂŸe im Interaktionsprozess mit BSA untersucht. Die Ergebnisse zeigen, dass die Nanopartikel-GrĂ¶ĂŸe bis zu einem Durchmesser von 40 nm relevant ist. Hier kann wahrscheinlich aufgrund der gleichen GrĂ¶ĂŸenverhĂ€ltnisse von BSA und der Silber-Nanopartikel-OberflĂ€che das Protein mit weniger funktionellen Gruppen mit der Nanopartikel-OberflĂ€che interagieren. Diese geringere AffinitĂ€t zeigt sich in grĂ¶ĂŸeren KD-Werten. Bei einem Nanopartikel-Durchmesser von ĂŒber 40 nm interagiert das BSA, aufgrund der stĂ€rker ausgeprĂ€gten GrĂ¶ĂŸenverhĂ€ltnisse gegenĂŒber dem Nanopartikel, nur noch mit einer „flachen“ NP-OberflĂ€che. Hier ist nur noch die vorhandene Gesamt-OberflĂ€che verantwortlich fĂŒr die Denaturierung des BSA. Demnach konnten fĂŒr große Nanopartikel keine Unterschiede in der Gleichgewichtskonstante ermittelt werden. Neben dem strukturellen Einfluss wurde die Funktionshemmung von Enzymen im Interaktionsprozess mit PVP-funktionalisierten Gold-Nanopartikeln untersucht. Die Enzyme Trypsin, Chymotrypsin und Lysozym zeigen eine konzentrationsabhĂ€ngige Hemmung der EnzymaktivitĂ€t im Interaktionsprozess mit PVP-funktionalisierten Gold-Nanopartikeln. Die Funktionshemmung von Trypsin wurde in Gegenwart von Gold-Nanopartikeln mit unterschiedlicher OberflĂ€chenladung untersucht. Es konnte in Gegenwart dieser Nanopartikel eine stĂ€rkere Hemmung der EnzymaktivitĂ€t bestimmt werden, wenn die OberflĂ€chenladung negativ war (- 30 mV), als fĂŒr eine positive OberflĂ€chenladung (+ 30 mV). UrsĂ€chlich fĂŒr dieses Verhalten ist die ĂŒberwiegend positive OberflĂ€chenladung des Trypsins, welches eine stĂ€rkere AdsorptionsaffinitĂ€t zu negativ geladenen Nanopartikeln besitzt. CD-Messungen belegen zudem einen Strukturverlust des Enzyms im Interaktionsprozess mit Gold-Nanopartikel-OberflĂ€chen. Dieser Strukturverlust kann ebenfalls im Bereich des aktiven Zentrums stattfinden, was den Verlust der Funktion des Enzyms erklĂ€rt. In weiteren Experimenten konnte gezeigt werden, dass sich Trypsin-MolekĂŒle wieder von der Nanopartikel-OberflĂ€che desorbieren lassen, diese dann allerdings keine EnzymaktivitĂ€t mehr aufweisen

    A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    Get PDF
    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles

    Effects of the physicochemical properties of titanium dioxide nanoparticles, commonly used as sun protection agents, on microvascular endothelial cells

    Get PDF
    Until now, the potential effects of titanium dioxide (TiO2) nanoparticles on endothelial cells are not well understood, despite their already wide usage. Therefore, the present work characterizes six TiO2 nanoparticle samples in the size range of 19 × 17 to 87 × 13 nm, which are commonly present in sun protection agents with respect to their physicochemical properties (size, shape, ζ-potential, agglomeration, sedimentation, surface coating, and surface area), their interactions with serum proteins and biological impact on human microvascular endothelial cells (relative cellular dehydrogenase activity, adenosine triphosphate content, and monocyte chemoattractant protein-1 release). We observed no association of nanoparticle morphology with the agglomeration and sedimentation behavior and no variations of the ζ-potential (−14 to −19 mV) in dependence on the surface coating. In general, the impact on endothelial cells was low and only detectable at concentrations of 100 ÎŒg/ml. Particles containing a rutile core and having rod-like shape had a stronger effect on cell metabolism than those with anatase core and elliptical shape (relative cellular dehydrogenase activity after 72 h: 60 vs. 90 %). Besides the morphology, the nanoparticle shell constitution was found to influence the metabolic activity of the cells. Upon cellular uptake, the nanoparticles were localized perinuclearly. Considering that in the in vivo situation endothelial cells would come in contact with considerably lower nanoparticle amounts than the lowest-observable adverse effects level (100 ÎŒg/ml), TiO2 nanoparticles can be considered as rather harmless to humans under the investigated conditions

    Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure

    No full text
    In biological fluids, proteins may associate with nanoparticles (NPs), leading to the formation of a so-called “protein corona” largely defining the biological identity of the particle. Here, we present a novel approach to assess apparent binding affinities for the adsorption/desorption of proteins to silver NPs based on the impact of the corona formation on the agglomeration kinetics of the colloid. Affinities derived from circular dichroism measurements complement these results, simultaneously elucidating structural changes in the adsorbed protein. Employing human serum albumin as a model, apparent affinities in the nanomolar regime resulted from both approaches. Collectively, our findings now allow discrimination between the formation of protein mono- and multilayers on NP surfaces

    PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    Get PDF
    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles
    corecore