335 research outputs found

    Local structure of Liquid-Vapour Interfaces

    Full text link
    The structure of a simple liquid may be characterised in terms of ground state clusters of small numbers of atoms of that same liquid. Here we use this sensitive structural probe to consider the effect of a liquid-vapour interface upon the liquid structure. At higher temperatures (above around half the critical temperature) we find that the predominant effect of the interface is to reduce the local density, which significantly suppresses the local cluster populations. At lower temperatures, however, pronounced interfacial layering is found. This appears to be connected with significant orientational ordering of clusters based on 3- and 5-membered rings, with the rings aligning perpendicular and parallel to the interface respectively. At all temperatures, we find that the population of five-fold symmetric structures is suppressed, rather than enhanced, close to the interface.Comment: 10 pages, 8 figures, accepted for publication by Molecular Physic

    The effect of attractions on the local structure of liquids and colloidal fluids

    Full text link
    We revisit the role of attractions in liquids and apply these concepts to colloidal suspensions. Two means are used to investigate the structure; the pair correlation function and a recently developed topological method. The latter identifies structures topologically equivalent to ground state clusters formed by isolated groups of 5 < m < 13 particles, which are specific to the system under consideration. Our topological methodology shows that, in the case of Lennard-Jones, the addition of attractions increases the system's ability to form larger (m>8) clusters, although pair-correlation functions are almost identical. Conversely, in the case of short-ranged attractions, pair correlation functions show a significant response to adding attraction, while the liquid structure exhibits a strong decrease in clustering upon adding attractions. Finally, a compressed, weakly interacting system shows a similar pair structure and topology.Comment: 22 page

    Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum

    Get PDF
    Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations

    Travelling and sticky affects: : Exploring teens and sexualized cyberbullying through a Butlerian-Deleuzian- Guattarian lens

    Get PDF
    In this paper we combine the thinking of Deleuze and Guattari (1984, 1987) with Judith Butler’s (1990, 1993, 2004, 2009) work to follow the rhizomatic becomings of young people’s affective relations in a range of on- and off-line school spaces. In particular we explore how events that may be designated as sexual cyberbullying are constituted and how they are mediated by technology (such as texting or in/through social networking sites). Drawing on findings from two different studies looking at teens’ uses of and experiences with social networking sites, Arto in Denmark, and Bebo in the UK, we use this approach to think about how affects flow, are distributed, and become fixed in assemblages. We map how affects are manoeuvred and potentially disrupted by young people, suggesting that in the incidences discussed affects travel as well as stick in points of fixation. We argue that we need to grasp both affective flow and fixity in order to gain knowledge of how subjectification of the gendered/classed/racialised/sexualised body emerges. A Butlerian-Deleuzian-Guattarian frame helps us to map some of these affective complexities that shape sexualized cyberbully events; and to recognize technologically mediated lines of flight when subjectifications are at least temporarily disrupted and new terms of recognition and intelligibility staked out. Keywords

    Geometric frustration in small colloidal clusters

    Full text link
    We study the structure of clusters in a model colloidal system with competing interactions using Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak, long-ranged repulsion is used to model electrostatic charging in experimental systems. The former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive Yukawa interaction. We consider the yield of clusters of specific structure as a function of the strength of the interactions, for clusters with m=3,4,5,6,7,10 and 13 colloids. At sufficient strengths of the attractive interaction (around 10 kT), the average bond lifetime approaches the simulation timescale and the system becomes nonergodic. For small clusters m<=5 where geometric frustration is not relevant, despite nonergodicity, for sufficient strengths of the attractive interaction the yield of clusters which maximise the number of bonds approaches 100%. However for m=7m=7 and higher, in the nonergodic regime we find a lower yield of these structures where we argue geometric frustration plays a significant role. m=6m=6 is a special case, where two structures, of octahedral and C2v symmetry compete, with the latter being favoured by entropic contributions in the ergodic regime and by kinetic trapping in the nonergodic regime. We believe that our results should be valid as far as the one-component description of the interaction potential is valid. A system with competing electrostatic repulsions and van der Waals attractions may be such an example. However, in some cases, the one-component description of the interaction potential may not be appropriate.Comment: 21 pages, accepted for publication by J. Phys. Condens. Matte

    Opportunities for low indirect land use biomass for biofuels in Europe

    Get PDF
    Sustainable biofuels are an important tool for the decarbonisation of transport. This is especially true in aviation, maritime, and heavy-duty sectors with limited short-term alternatives. Their use by conventional transport fleets requires few changes to the existing infrastructure and engines, and thus their integration can be smooth and relatively rapid. Provision of feedstock should comply with sustainability principles for (i) producing additional biomass without distorting food and feed markets and (ii) addressing challenges for ecosystem services, including biodiversity, and soil quality. This paper performs a meta-analysis of current research for low indirect land use change (ILUC) risk biomass crops for sustainable biofuels that benefited either from improved agricultural practices or from cultivation in unused, abandoned, or severely degraded land. Two categories of biomass crops are considered here: oil and lignocellulosic. The findings confirm that there are significant opportunities to cultivate these crops in European agro-ecological zones with sustainable agronomic practices both in farming land and in land with natural constraints (unused, abandoned, and degraded land). These could produce additional low environmental impact feedstocks for biofuels and deliver economic benefits to farmer

    Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    Full text link
    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \AA, and Hα\alpha from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as \sim215 km s1^{-1} in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in Hα\alpha and TRACE 171 \AA\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be the driver of a radial velocity pulse outwards that accelerates this plasma blob in the solar atmosphere. In support of identification of the possible driver of the observed eruption, we solve the two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed supersonic plasma blob. The numerical modelling closely match the observed velocity, evolution of multi-temperature plasma, and quick vanishing of the blob found in the observations. Under typical coronal conditions, such blobs may also carry an energy flux of 7.0×106\times10^{6} ergs cm2^{-2} s1^{-1} to re-balance the coronal losses above active regions.Comment: Solar Physics; 22 Pages; 8 Figure

    Oscillations and waves in solar spicules

    Get PDF
    Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes
    corecore