29 research outputs found

    Two-step synthesis of polymer fibre material comprising indium-, bismuth-, or antimony-doped nanosized tin oxides

    Get PDF
    In this paper, we present a method of formation of polymer fibre materials comprising dispersed oxides of rare and trace elements. The results of X-ray diffraction and spectral analyses show that the optimum synthesis conditions of the antimony-doped tin oxide, indium-doped tin oxide, and bismuth-doped tin oxide particles are provided using the "reverse" hydrolytic co-precipitation of hydroxides from chloride solutions combined with the subsequent thermal treatment at 1000°C. Durable fixation of nanoparticles on the fibre surface is confirmed by the atomic emission spectrometry with inductively coupled plasma and transmission electron microscopy. The results show that spraying of a free stream of the thermoplastic polymer melt with a gas stream containing nanoparticles allows obtaining fibre materials, which possess catalytic, photosensitive, as well as heat and sound insulating properties

    Investigation of supramolecular structure of the rare and rare-earth elements nanoparticles carrier when modified using microwave irradiation

    Get PDF
    In this paper, we present an IR and XRD study of the polypropylene fibrous nanoparticles carrier when its surface modified with rare and rare-earth elements nanoparticles using microwave irradiation, by the example of SnO2/TiO2 hetero-nanoparticles. The paper shows that the smectic mesomorph structure of the non-modified polypropylene fibrous carrier transforms into the monoclinic α-crystalline due to microwave irradiation. At the same time, the carrier material remains stereoregular and keeps its helical structure

    Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    Get PDF
    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration

    Superficial acid-base properties of polymer fibres

    Get PDF
    Protolytic properties of fine fibre plastics based on polypropylene, polyethyleneterephthalate and polycarbonate were investigated. Acidic (carboxylic, hydroxyl) and basic Lewis sites (esters, carbonates, epoxies) were discovered on fibres surface using IR spectroscopy. The number of active groups of various nature and their pKa values were evaluated by potentiometric titration in aqueous and non-aqueous media. The tested fibres possess a low capacity for both acidic and basic sites on it. The results indicate that all the polymer fibre materials (PFM) due to the presence of carboxyl groups on the surfaces, enable modification of their surfaces with metal nanoparticles, thereby giving them unique properties, e.g., photocatalytic and bactericidal

    Hydrogen sensors based on In2O3 thin films with bimetallic Pt/Pd catalysts on the surface and tin and dysprosium impuri-ties in the bulk

    Get PDF
    This paper presents the results of studying the characteristics of hydrogen sensors based on thin In2O3 films modified with tin and dysprosium with dispersed double Pt/Pd catalysts deposited on the surface. To control the content of Sn and Dy in the films, an original technology was developed, and ceramic targets were fabricated from powders of the In–Dy–O, Dy–Sn–O, and In–Dy–Sn–O systems synthesized by the sol–gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets. Structural features of the obtained thin films were studied by Raman spectroscopy. It is shown that various combinations of tin and dysprosium concentrations, as well as the presence of Pt/Pd catalysts on the surface, have a significant effect on the defectiveness of the films and the density of oxygen adsorption centers. As a result, the resistance of sensors in pure air (R0), the activation energies of the temperature dependences of R0, the bending of the energy bands at the grain boundaries of the semiconductor, and the responses to the action of hydrogen in the concentration range of 20–25,000 ppm change. A unique feature of Pt/Pd/ In2O3: Sn (0.5 at%), Dy (4.95 at%) films is their high sensitivity at 20–100 ppm and the absence of signal saturation in the region of high hydrogen concentrations of 5000–25,000 ppm, allowing them to be used to detect H2 in a wide range of concentrations

    Properties of polydisperse tin-doped dysprosium and indium oxides

    Get PDF
    The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties
    corecore