5 research outputs found

    Dietary Intake, Serum Hormone Concentrations, Amenorrhea and Bone Mineral Density of Physique Athletes and Active Gym Enthusiasts

    Get PDF
    As the diet, hormones, amenorrhea, and bone mineral density (BMD) of physique athletes (PA) and gym enthusiasts (GE) are little-explored, we studied those in 69 females (50 PA, 19 GE) and 20 males (11 PA, 9 GE). Energy availability (EA, kcal·kgFFM−1·d−1 in DXA) in female and male PA was ~41.3 and ~37.2, and in GE ~39.4 and ~35.3, respectively. Low EA (LEA) was found in 10% and 26% of female PA and GE, respectively, and in 11% of male GE. In PA, daily protein intake (g/kg body mass) was ~2.9–3.0, whereas carbohydrate and fat intakes were ~3.6–4.3 and ~0.8–1.0, respectively. PA had higher protein and carbohydrate and lower fat intakes than GE (p < 0.05). Estradiol, testosterone, IGF-1, insulin, leptin, TSH, T4, T3, cortisol, or BMD did not differ between PA and GE. Serum IGF-1 and leptin were explained 6% and 7%, respectively, by EA. In non-users of hormonal contraceptives, amenorrhea was found only in PA (27%) and was associated with lower fat percentage, but not EA, BMD, or hormones. In conclusion, off-season dietary intakes, hormone levels, and BMD meet the recommendations in most of the PA and GE. Maintaining too-low body fat during the off-season may predispose to menstrual disturbances

    Dietary Intake, Serum Hormone Concentrations, Amenorrhea and Bone Mineral Density of Physique Athletes and Active Gym Enthusiasts

    Get PDF
    As the diet, hormones, amenorrhea, and bone mineral density (BMD) of physique athletes (PA) and gym enthusiasts (GE) are little-explored, we studied those in 69 females (50 PA, 19 GE) and 20 males (11 PA, 9 GE). Energy availability (EA, kcal·kgFFM−1·d−1 in DXA) in female and male PA was ~41.3 and ~37.2, and in GE ~39.4 and ~35.3, respectively. Low EA (LEA) was found in 10% and 26% of female PA and GE, respectively, and in 11% of male GE. In PA, daily protein intake (g/kg body mass) was ~2.9–3.0, whereas carbohydrate and fat intakes were ~3.6–4.3 and ~0.8–1.0, respectively. PA had higher protein and carbohydrate and lower fat intakes than GE (p < 0.05). Estradiol, testosterone, IGF-1, insulin, leptin, TSH, T4, T3, cortisol, or BMD did not differ between PA and GE. Serum IGF-1 and leptin were explained 6% and 7%, respectively, by EA. In non-users of hormonal contraceptives, amenorrhea was found only in PA (27%) and was associated with lower fat percentage, but not EA, BMD, or hormones. In conclusion, off-season dietary intakes, hormone levels, and BMD meet the recommendations in most of the PA and GE. Maintaining too-low body fat during the off-season may predispose to menstrual disturbances

    Dietary Intake, Serum Hormone Concentrations, Amenorrhea and Bone Mineral Density of Physique Athletes and Active Gym Enthusiasts

    No full text
    As the diet, hormones, amenorrhea, and bone mineral density (BMD) of physique athletes (PA) and gym enthusiasts (GE) are little-explored, we studied those in 69 females (50 PA, 19 GE) and 20 males (11 PA, 9 GE). Energy availability (EA, kcal·kgFFM−1·d−1 in DXA) in female and male PA was ~41.3 and ~37.2, and in GE ~39.4 and ~35.3, respectively. Low EA (LEA) was found in 10% and 26% of female PA and GE, respectively, and in 11% of male GE. In PA, daily protein intake (g/kg body mass) was ~2.9–3.0, whereas carbohydrate and fat intakes were ~3.6–4.3 and ~0.8–1.0, respectively. PA had higher protein and carbohydrate and lower fat intakes than GE (p < 0.05). Estradiol, testosterone, IGF-1, insulin, leptin, TSH, T4, T3, cortisol, or BMD did not differ between PA and GE. Serum IGF-1 and leptin were explained 6% and 7%, respectively, by EA. In non-users of hormonal contraceptives, amenorrhea was found only in PA (27%) and was associated with lower fat percentage, but not EA, BMD, or hormones. In conclusion, off-season dietary intakes, hormone levels, and BMD meet the recommendations in most of the PA and GE. Maintaining too-low body fat during the off-season may predispose to menstrual disturbances.peerReviewe

    TGF-β3 increases the severity of radiation-induced oral mucositis and salivary gland fibrosis in a mouse model

    No full text
    Toxicities from head and neck (H&N) radiotherapy (RT) may affect patient quality of life and can be dose-limiting. Proteins from the transforming growth factor beta (TGF-β) family are key players in the fibrotic response. While TGF-β1 is known to be pro-fibrotic, TGF-β3 has mainly been considered anti-fibrotic. Moreover, TGF-β3 has been shown to act protective against acute toxicities after radio- and chemotherapy. In the present study, we investigated the effect of TGF-β3 treatment during fractionated H&N RT in a mouse model. 30 C57BL/6J mice were assigned to three treatment groups. The RT + TGF-β3 group received local fractionated H&N RT with 66 Gy over five days, combined with TGF-β3-injections at 24-hour intervals. Animals in the RT reference group received identical RT without TGF-β3 treatment. The non-irradiated control group was sham-irradiated according to the same RT schedule. In the follow-up period, body weight and symptoms of oral mucositis and lip dermatitis were monitored. Saliva was sampled at five time points. The experiment was terminated 105 d after the first RT fraction. Submandibular and sublingual glands were preserved, sectioned, and stained with Masson’s trichrome to visualize collagen. A subset of mice in the RT + TGF-β3 group displayed increased severity of oral mucositis and increased weight loss, resulting in a significant increase in mortality. Collagen content was significantly increased in the submandibular and sublingual glands for the surviving RT + TGF-β3 mice, compared with non-irradiated controls. In the RT reference group, collagen content was significantly increased in the submandibular gland only. Both RT groups displayed lower saliva production after treatment compared to controls. TGF-β3 treatment did not impact saliva production. When repeatedly administered during fractionated RT at the current dose, TGF-β3 treatment increased acute H&N radiation toxicities and increased mortality. Furthermore, TGF-β3 treatment may increase the severity of radiation-induced salivary gland fibrosis.</p

    Acute normal tissue responses in a murine model following fractionated irradiation of the head and neck with protons or X-rays

    No full text
    Background: The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. Materials and methods: Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. Results: The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. Conclusion: With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.</p
    corecore