13,452 research outputs found

    Production of (τ+τ−)b(\tau^+\tau^-)_b in electron positron collisions

    Full text link
    (τ+τ−)b(\tau^+\tau^-)_b is an atom of simple hydrogenlike structure similar to positronium (e+e−)b(e^+e^-)_b and (μ+μ−)b(\mu^+\mu^-)_b. In this paper energy levels and decay widths of different decay channels of (τ+τ−)b(\tau^+\tau^-)_b are given. Cross section of production of this atomic system in e+e−e^+e^- annihilation taking into account radiative corrections is calculated. According to our estimates 886 (τ+τ−)b(\tau^+\tau^-)_b atoms may be produced at BEPCII and 29 (τ+τ−)b(\tau^+\tau^-)_b atoms are produced at VEPP-4M under the present experimental conditions.Comment: 5 pages, submitted to Int. Jour. Mod. Phys.

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    Evidence for multiple superconducting gaps in optimally doped BaFe1.87_{1.87}Co0.13_{0.13}As2_{2} from infrared spectroscopy

    Full text link
    We performed combined infrared reflection and ellipsometry measurements of the in-plane optical reponse of single crystals of the pnictide high temperature superconductor BaFe1.87_{1.87}Co0.13_{0.13}As2_{2} with TcT_{c} = 24.5 K. We observed characteristic superconductivity-induced changes which provide evidence for at least three different energy gaps. We show that a BCS-model of isotropic gaps with 2Δ/kBTc\Delta/k_{B}T_{c} of 3.1, 4.7, and 9.2 reproduces the experimental data rather well. We also determine the low-temperature value of the in-plane magnetic penetration depth of 270 nm

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page

    Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay and topology

    Get PDF
    We systematically investigate the phenomena of coherence resonance in time-delay coupled networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we examine the interplay of noise, time-delayed coupling and network topology in the generation of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is independent of the number of nearest neighbors and the system size. In the presence of noise, we demonstrate the possibility of controlling coherence resonance by varying the time-delay and the number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and weakening of coherence resonance are possible

    Magnetoelectricity at room temperature in Bi0.9-xTbxLa0.1FeO3 system

    Full text link
    Magnetoelectric compounds with the general formula, Bi0.9-xRxLa0.1FeO3 (R =Gd, Tb, Dy, etc.), have been synthesized. These show the coexistence of ferroelectricity and magnetism, possess high dielectric constant and exhibit magnetoelectric coupling at room temperature. Such materials may be of great significance in basic as well as applied research.Comment: 11 pages of text and figure

    Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 interface

    Full text link
    With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier density of Ns~5-9x 10E13 cm^-2, an effective mass of m*~3m_e, and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi1-xNbxO3 and therefore suggestive of polaronic correlations of the confined carriers. We also determined the vertical density profile which has a strongly asymmetric shape with a rapid initial decay over the first 2 nm and a pronounced tail that extends to about 11 nm.Comment: 4 pages, 3 figures, 1 EPAPS file (3 figures

    Noncommutativity In The Mechanics Of A Free Massless Relativistic Particle

    Full text link
    We show the existence of a noncommutative spacetime structure in the context of a complete discussion on the underlying spacetime symmetries for the physical system of a free massless relativistic particle. The above spacetime symmetry transformations are discussed for the first-order Lagrangian of the system where the transformations on the coordinates, velocities and momenta play very important roles. We discuss the dynamics of this system in a systematic manner by exploiting the symplectic structures associated with the four dimensional (non-)commutative cotangent (i.e. momentum phase) space corresponding to a two dimensional (non-)commutative configuration (i.e. target) space. A simple connection of the above noncommutativity (NC) is established with the NC associated with the subject of quantum groups where SLq,q−1(2)SL_{q,q^{-1}} (2) transformations play a decisive role.Comment: LaTeX file, 19 page

    Cohomological Operators and Covariant Quantum Superalgebras

    Full text link
    We obtain an interesting realization of the de Rham cohomological operators of differential geometry in terms of the noncommutative q-superoscillators for the supersymmetric quantum group GL_{qp} (1|1). In particular, we show that a unique superalgebra, obeyed by the bilinears of fermionic and bosonic noncommutative q-(super)oscillators of GL_{qp} (1|1), is exactly identical to that obeyed by the de Rham cohomological operators. A set of discrete symmetry transformation for a set of GL_{qp} (1|1) covariant superalgebras turns out to be the analogue of the Hodge duality * operation of differential geometry. A connection with an extended BRST algebra obeyed by the nilpotent (anti-)BRST and (anti-)co-BRST charges, the ghost charge and a bosonic charge (which is equal to the anticommutator of (anti-)BRST and (anti-)co-BRST charges) is also established.Comment: LaTeX file, 21 page
    • …
    corecore