8,163 research outputs found

    Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3

    Get PDF
    Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3c) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x greater than 0.10, while the unit cell volume remains nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x=0.15 at room temperature. Below the Curie temperature T_C, the resistance exhibits metallic behavior for the x _ 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x less than or equal to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The separation of TC and the resistivity maximum temperature Tmax enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil

    Synthesis of a Graphene-Encapsulated Fe 3 C/Fe Catalyst Supported on Sporopollenin Exine Capsules and Its Use for the Reverse Waterā€“Gas Shift Reaction

    Get PDF
    Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, Ī±-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauerā€“Emmettā€“Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the Cā•C to Cā€“C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse waterā€“gas shift reaction at high temperatures (>600 Ā°C)

    Curvaton Dynamics and the Non-Linearity Parameters in Curvaton Model

    Full text link
    We investigate the curvaton dynamics and the non-linearity parameters in curvaton model with potential slightly deviating from the quadratic form in detail. The non-linearity parameter gNLg_{NL} will show up due to the curvaton self-interaction. We also point out that the leading order of non-quadratic term in the curvaton potential can be negative, for example in the axion-type curvaton model. If a large positive gNLg_{NL} is detected, the axion-type curvaton model will be preferred.Comment: 14 pages, 4 figures; refs adde

    Modeling of UWB Channels by Using an Efficient Ray Tracing Procedure

    Get PDF
    I-Introduction A fundamental step in Ultra Wide Band (UWB) communication systems involves the characterization of the indoor propagation channel. The frequency selectivity of the propagation process introduces fundamental differences between UWB channels and conventional (narrowband) channels. Various channel modeling techniques can be used to describe the UWB channel [1]: in particular, it is possible to resort to statistical modeling based on frequency or time domain measurement campaigns or to deterministic modeling based on simulations. To date, ray tracing (RT) based approaches have been widely used to characterize the indoor channel for both narrowband and wide-band systems, while only limited attempts have been made to predict the UWB characteristics II-Measurement Procedure Frequency-domain UWB channel measurements were conducted in an indoor environment that consisted of a 5 mƗ4.7 mƗ2.6 m laboratory of the Communications Research Group at the University of Oxford, with block walls, concrete floors and ceiling, a large glass window, and metallic and wooden furniture, as shown i

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Search for the Lepton Flavor Violation Process J/Ļˆā†’eĪ¼J/\psi \to e\mu at BESIII

    Get PDF
    We search for the lepton-flavor-violating decay of the J/ĻˆJ/\psi into an electron and a muon using (225.3Ā±2.8)Ɨ106(225.3\pm2.8)\times 10^{6} J/ĻˆJ/\psi events collected with the BESIII detector at the BEPCII collider. Four candidate events are found in the signal region, consistent with background expectations. An upper limit on the branching fraction of B(J/Ļˆā†’eĪ¼)<1.5Ɨ10āˆ’7\mathcal{B}(J/\psi \to e\mu)< 1.5 \times 10^{-7} (90% C.L.) is obtained

    Search for Baryonic Decays of \psi(3770) and \psi(4040)

    Full text link
    By analyzing data samples of 2.9 fb^{-1} collected at \sqrt s=3.773 GeV, 482 pb^{-1} collected at \sqrt s=4.009 GeV and 67 pb^{-1} collected at \sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \psi(3770) and \psi(4040) decay to baryonic final states, including \Lambda\bar\Lambda\pi^+\pi^-, \Lambda \bar\Lambda\pi^0, \Lambda\bar\Lambda\eta, \Sigma^+ \bar\Sigma^-, \Sigma^0 \bar\Sigma^0, \Xi^-\bar\Xi^+ and \Xi^0\bar\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.Comment: 9 pages, 3 figure

    Higher-order multipole amplitude measurement in Ļˆ(2S)ā†’Ī³Ļ‡c2\psi(2S)\to\gamma\chi_{c2}

    Full text link
    Using 106Ɨ106106\times10^6 Ļˆ(2S)\psi(2S) events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition Ļˆ(2S)ā†’Ī³Ļ‡c2ā†’Ī³Ļ€Ļ€/Ī³KK\psi(2S)\to\gamma\chi_{c2}\to\gamma\pi\pi/\gamma KK are measured. A fit to the Ļ‡c2\chi_{c2} production and decay angular distributions yields M2=0.046Ā±0.010Ā±0.013M2=0.046\pm0.010\pm0.013 and E3=0.015Ā±0.008Ā±0.018E3=0.015\pm0.008\pm0.018, where the first errors are statistical and the second systematic. Here M2M2 denotes the normalized magnetic quadrupole amplitude and E3E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2M2 signal with 4.4Ļƒ4.4\sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure
    • ā€¦
    corecore