18,897 research outputs found
New method for critical failure prediction of complex systems
Rigorous analytical technique, called criticality determination methodology /or CD technique/ determines the probability that a given complex system will successfully achieve stated objectives. The CD technique identifies critical elements of the system by a failure mode and effects analysis
A Concise Introduction to Perturbation Theory in Cosmology
We give a concise, self-contained introduction to perturbation theory in
cosmology at linear and second order, striking a balance between mathematical
rigour and usability. In particular we discuss gauge issues and the active and
passive approach to calculating gauge transformations. We also construct
gauge-invariant variables, including the second order tensor perturbation on
uniform curvature hypersurfaces.Comment: revtex4, 16 pages, 3 figures; v2: minor changes, typos corrected,
reference added, version accepted by CQ
Detection of a Moving Rigid Solid in a Perfect Fluid
In this paper, we consider a moving rigid solid immersed in a potential
fluid. The fluid-solid system fills the whole two dimensional space and the
fluid is assumed to be at rest at infinity. Our aim is to study the inverse
problem, initially introduced in [3], that consists in recovering the position
and the velocity of the solid assuming that the potential function is known at
a given time. We show that this problem is in general ill-posed by providing
counterexamples for which the same potential corresponds to different positions
and velocities of a same solid. However, it is also possible to find solids
having a specific shape, like ellipses for instance, for which the problem of
detection admits a unique solution. Using complex analysis, we prove that the
well-posedness of the inverse problem is equivalent to the solvability of an
infinite set of nonlinear equations. This result allows us to show that when
the solid enjoys some symmetry properties, it can be partially detected.
Besides, for any solid, the velocity can always be recovered when both the
potential function and the position are supposed to be known. Finally, we prove
that by performing continuous measurements of the fluid potential over a time
interval, we can always track the position of the solid.Comment: 19 pages, 14 figure
Free Abelian 2-Form Gauge Theory: BRST Approach
We discuss various symmetry properties of the Lagrangian density of a four (3
+ 1)-dimensional (4D) free Abelian 2-form gauge theory within the framework of
Becchi-Rouet-Stora-Tyutin (BRST) formalism. The present free Abelian gauge
theory is endowed with a Curci-Ferrari type condition which happens to be a key
signature of the 4D non-Abelian 1-form gauge theory. In fact, it is due to the
above condition that the nilpotent BRST and anti-BRST symmetries of the theory
are found to be absolutely anticommuting in nature. For our present 2-form
gauge theory, we discuss the BRST, anti-BRST, ghost and discrete symmetry
properties of the Lagrangian densities and derive the corresponding conserved
charges. The algebraic structure, obeyed by the above conserved charges, is
deduced and the constraint analysis is performed with the help of the
physicality criteria where the conserved and nilpotent (anti-)BRST charges play
completely independent roles. These physicality conditions lead to the
derivation of the above Curci-Ferrari type restriction, within the framework of
BRST formalism, from the constraint analysis.Comment: LaTeX file, 21 pages, journal referenc
The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: modifications to the androgen receptor
Prostate cancer is the second most common male malignancy in the western world an increasing incidence in an ageing population. Treatment of advanced prostate cancer relies on androgen deprivation. Although the majority of patients initially respond favourably to androgen deprivation therapy, the mean time to relapse is 12-18 months. Currently there are few treatments available for men who
have developed resistance to hormone therapy, due to the lack of understanding of the molecular mechanisms underlying development of this disease. Recently, however, major advances have been made in understanding both
androgen receptor (AR) dependent and independent pathways which promote development of hormone resistant prostate cancer. This review will focus on modifications to the AR and associated pathways. Molecular modifications to the
androgen receptor itself, e.g. mutations and/or amplification, although involved in the development of hormone resistance cannot explain all cases. Phosphorylation of AR, via either Ras/MAP kinase or PI3K/Akt signal transduction pathways, have been shown to activate AR in both a ligand (androgen) dependent and independent fashion. During this review we will discuss the clinical evidence to support AR dependent pathways as mediators of hormone resistance
Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory
We exploit the geometrical superfield formalism to derive the local,
covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry
transformations and the non-local, non-covariant and continuous dual-BRST
symmetry transformations for the free Abelian one-form gauge theory in four -dimensions (4D) of spacetime. Our discussion is carried out in the
framework of BRST invariant Lagrangian density for the above 4D theory in the
Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST
charges (and the transformations they generate) are provided in the language of
translations of some superfields along the Grassmannian directions of the six
(-dimensional supermanifold parametrized by the four spacetime and two
Grassmannian variables.Comment: LaTeX file, 23 page
Variational Mote Carlo Study of Flat Band Ferromagnetism -- Application to CeRh_3 B_2
A new mechanism for ferromagnetism in CeRh_3B_2 is proposed on the basis of
variational Monte Carlo results. In a one-dimensional Anderson lattice where
each 4f electron hybridizes with a ligand orbital between neighboring Ce sites,
ferromagnetism is stabilized due to a nearly flat band which is a mixture of
conduction and 4f electron states. Because of the strong spin-orbit interaction
in 4f electron states, and of considerable amount of hybridization in the
nearly flat band, the magnetic moments from 4f and conduction electrons tend to
cancel each other. The resultant ferromagnetic moment becomes smaller as
compared with the local 4f moment, and the Fermi surface in the ferromagnetic
ground state is hardly affected by the presence of 4f electrons. These
theoretical results are consistent with experimental observations in CeRh_3B_2
by neutron scattering and dHvA effects.Comment: to be published in J.Phys.Soc.Jp
Generalised verification of the observer property in discrete event systems
The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system
Generalised verification of the observer property in discrete event systems
The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system
Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory
We demonstrate the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the
four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory
that is described by the coupled Lagrangian densities (which incorporate the
celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-)
BRST symmetry transformations is ensured by the existence of a Curci-Ferrari
type restriction that emerges from the superfield formalism as well as from the
equations of motion that are derived from the above coupled Lagrangian
densities. We show the invariance of the action from the point of view of the
symmetry considerations as well as superfield formulation. We discuss,
furthermore, the topological term within the framework of superfield formalism
and provide the geometrical meaning of its invariance under the (anti-) BRST
symmetry transformations.Comment: LaTeX file, 22 pages, journal versio
- …